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Abstract

The rapid advancement of large language models has created a significant gap be-
tween software-based intelligence and the physical capabilities of robotic systems. This
thesis addresses this challenge by developing an end-to-end reinforcement learning frame-
work that directly maps natural language instructions to continuous motor actions for
legged robots, eliminating the need for intermediate symbolic representations. The pro-
posed solution integrates multilingual sentence transformer embeddings directly into the
observation space of an actor-critic policy. This policy is trained in a high-fidelity, GPU-
accelerated physics simulator (Isaac Lab) using a comprehensive dataset of 922 multi-
lingual commands. The trained policy was subsequently optimized with TensorRT and
successfully deployed on a physical JetHexa hexapod robot, controlled in real-time by
an embedded NVIDIA Jetson Nano via a distributed ROS architecture. Evaluation re-
sults demonstrate that the system can successfully generalize to novel commands not
seen during training, achieving 55% directional accuracy on a diverse test set. This con-
firms that the model learned a genuine mapping from semantic intent to physical action.
While velocity magnitude tracking was constrained by hardware limitations, the sys-
tem’s ability to correctly interpret movement direction validates the feasibility of direct
language-to-motor grounding. This work contributes a scalable and computationally ef-
ficient approach for intuitive human-robot interaction, advancing the development of
more generalist and accessible robotic systems.

Key words: Reinforcement learning, natural language, legged robot

Resumen

El rdpido avance de los grandes modelos de lenguaje ha creado una brecha signi-
ficativa entre la inteligencia basada en software y las capacidades fisicas de los sistemas
roboéticos. Esta tesis aborda este desafio mediante el desarrollo de un marco de aprendiza-
je por refuerzo de extremo a extremo que traduce directamente instrucciones en lenguaje
natural a acciones motoras continuas para robots con patas, eliminando la necesidad de
representaciones simbdlicas intermedias. La solucién propuesta integra embeddings mul-
tilingties de un sentence transformer directamente en el espacio de observacion de una
politica actor-critic. Dicha politica se entrena en un simulador de fisica de alta fidelidad
acelerado por GPU (Isaac Lab) utilizando un completo conjunto de datos de 922 coman-
dos multilingties. La politica entrenada fue optimizada posteriormente con TensorRT y
desplegada con éxito en un robot hexdpodo fisico JetHexa, controlado en tiempo real por
un sistema embebido NVIDIA Jetson Nano a través de una arquitectura ROS distribuida.
Los resultados de la evaluaciéon demuestran que el sistema puede generalizar con éxi-
to a comandos novedosos no vistos durante el entrenamiento, alcanzando una precisién
direccional del 55% en un diverso conjunto de pruebas. Esto confirma que el modelo
aprendié una correspondencia genuina entre la intencién seméntica y la accién fisica.
Aunque el seguimiento de la magnitud de la velocidad se vio limitado por las restriccio-
nes del hardware, la capacidad del sistema para interpretar correctamente la direccién del
movimiento valida la viabilidad de la conexién directa entre lenguaje y accién motora.
Este trabajo aporta un enfoque escalable y computacionalmente eficiente para la inter-
accion intuitiva humano-robot, avanzando en el desarrollo de sistemas robd4ticos mas
generalistas y accesibles.

Palabras clave: Aprendizaje por refuerzo, lenguaje natural, robot con patas
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Resum

El rapid avang dels grans models de llenguatge ha creat una bretxa significativa entre
la intel-ligéncia basada en programari i les capacitats fisiques dels sistemes robotics. Esta
tesi aborda aquest desafiament mitjangant el desenvolupament d’un marc d’aprenentatge
per refor¢ d’extrem a extrem que traduix directament instruccions en llenguatge natural
a accions motores continues per a robots amb potes, eliminant la necessitat de represen-
tacions simboliques intermedies. La solucié proposada integra embeddings multilingties
d'un sentence transformer directament en l’espai d’observacié d'una politica actor-critic.
Esta politica s’entrena en un simulador de fisica d’alta fidelitat accelerat per GPU (Isa-
ac Lab) utilitzant un complet conjunt de dades de 922 comandaments multilingties. La
politica entrenada va ser optimitzada posteriorment amb TensorRT i desplegada amb
exit en un robot hexapode fisic JetHexa, controlat en temps real per un sistema embegut
NVIDIA Jetson Nano a través d’una arquitectura ROS distribuida. Els resultats de 1'a-
valuacié demostren que el sistema pot generalitzar amb exit a comandaments nous no
vistos durant 1’entrenament, aconseguint una precisié direccional del 55% en un divers
conjunt de proves. Aixo confirma que el model va aprendre una correspondencia genu-
ina entre la intencié semantica i 1’acci6 fisica. Encara que el seguiment de la magnitud
de la velocitat es va veure limitat per les restriccions del maquinari, la capacitat del sis-
tema per a interpretar correctament la direccié del moviment valida la viabilitat de la
connexi6 directa entre llenguatge i accié motora. Este treball aporta un enfocament esca-
lable i computacionalment eficient per a la interacci6 intuitiva huma-robot, avangant en
el desenvolupament de sistemes robotics més generalistes i accessibles.

Paraules clau: Aprenentatge per reforg, llenguatge natural, robot amb potes
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CHAPTER 1
Introduction

The convergence of artificial intelligence and robotics has reached a pivotal moment in
2025, with humanoid robots transitioning from laboratory prototypes to commercial de-
ployments. The humanoid robot market was valued at $2.03 billion in 2024 and is pre-
dicted to increase to more than $13 billion by 2029, signaling an unprecedented accelera-
tion in the deployment of intelligent physical agents [9].

Yet despite this remarkable progress, a fundamental challenge persists: the gap be-
tween software intelligence and physical intelligence. Large Language Models (LLMs)
have demonstrated near-human capabilities in reasoning, planning, and communication,
but translating this semantic understanding into precise physical actions remains an un-
solved problem [41]. This disconnect is particularly pronounced in legged locomotion,
where the continuous, dynamic nature of movement and the need for precise temporal
coordination across multiple degrees of freedom present unique challenges.

Traditional robotic control systems rely heavily on predefined motion primitives, care-
fully engineered state machines, or hierarchical architectures that separate high-level
planning from low-level execution [24, 18]. While successful in constrained environ-
ments, these approaches face critical scalability barriers, semantic discontinuities, and
limited adaptability that prevent their deployment in real-world scenarios where vari-
ability is the norm rather than the exception.

The integration of natural language understanding with robotic control systems rep-
resents one of the most promising pathways toward truly generalist robotics. Recent
breakthroughs like LEGION (2025) and ELLMER (2025) have shown that robots can pre-
serve and combine knowledge across tasks using language embeddings, enabling life-
long learning capabilities that mirror human knowledge acquisition [25, 26]. However,
most existing language-guided robotic systems focus primarily on manipulation tasks,
with limited attention to the equally important challenge of language-guided locomo-
tion.

1.1 Motivation

The motivation for this research stems from several critical observations about the cur-
rent state of robotics and artificial intelligence that create both technical challenges and
unprecedented opportunities for advancement.

1



2 Introduction

1.1.1. Technical Motivation

The disparity between language-based intelligence and embodied intelligence has be-
come increasingly apparent as Al systems demonstrate remarkable capabilities in digital
domains while struggling with basic physical tasks. Figure’s Helix system represents
the first Vision-Language-Action model to directly control an entire humanoid upper
body from natural language, capable of generating long-horizon, collaborative, dexter-
ous manipulation on the fly without task-specific demonstrations [13]. This achievement
highlights both the potential and the current limitations of language-guided robotics.

Current approaches to language-guided robotics face several fundamental limita-
tions:

Hierarchical Complexity: Most existing approaches rely on hierarchical architectures
that separate language understanding, task planning, and motor execution. While this
modular design offers interpretability, it introduces multiple points of failure and limits
the system’s ability to discover novel solutions that span multiple levels of the hierarchy

[2].

Limited Direct Grounding: Few approaches demonstrate direct grounding of lan-
guage in continuous motor actions. Most systems use language for high-level task speci-
fication while relying on pre-programmed primitives for actual execution [35].

Locomotion Gap: The majority of language-guided robotics research focuses on ma-
nipulation tasks, with limited work addressing the challenge of language-guided loco-
motion. Locomotion presents unique challenges due to its continuous, dynamic nature
and the need for precise temporal coordination.

1.1.2. Professional Motivation

The professional motivation for this work is driven by the recognition that natural lan-
guage represents humanity’s most sophisticated interface for expressing complex inten-
tions and coordinating collaborative activities. The ability to communicate with robots
using natural language could fundamentally transform human-robot interaction across
multiple domains:

Industrial Applications: Factory workers could direct robots using natural language
commands, enabling more flexible manufacturing processes and reducing the need for
specialized programming expertise. This could accelerate the adoption of robotic assis-
tance in small and medium enterprises that lack extensive technical resources.

Assistive Technologies: Language-guided robots could provide intuitive interfaces
for elderly individuals or those with mobility impairments, enabling commands like
"walk me to the kitchen slowly" or "help me navigate around these obstacles."

Emergency Response: Robots capable of understanding natural language commands
like "navigate to the collapsed structure and search for survivors" could enable remote
coordination in dangerous environments where traditional teleoperation interfaces are
impractical.

The economic implications are significant: the global market for reinforcement learn-
ing technologies was over $52B in 2024 and is projected to reach $32T by 2037, growing
at around 65% CAGR during 2025-2037 [11].
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1.2 Objectives

The primary objective of this thesis is to develop an end-to-end neural network approach
that can directly map natural language instructions to motor actions for legged robots
without requiring intermediate symbolic representations or predefined motion primi-
tives. This overarching goal is achieved through several specific objectives:

Primary Objectives:

1. Develop Direct Language-Motor Grounding: Create a unified framework that in-
tegrates language understanding directly into the reinforcement learning observa-
tion space, enabling direct associations between natural language semantics and
motor control signals.

2. Achieve Multilingual Capability: Design and validate a system capable of under-
standing and executing locomotion commands across multiple languages (English,
Spanish, and potentially others), demonstrating the universal nature of embodied
intelligence.

3. Implement End-to-End Learning: Train a single neural network policy capable
of interpreting diverse natural language instructions and executing corresponding
motor behaviors without hierarchical task decomposition.

4. Validate Real-World Deployment: Demonstrate the approach through both high-
fidelity simulation training and real-world deployment on a hexapod robot plat-
form, proving the practical feasibility of the proposed method.

Secondary Objectives:

1. Demonstrate Emergent Semantic Understanding: Validate the robot’s ability to
generalize to novel command combinations and variations not explicitly present in
training data.

2. Achieve Computational Efficiency: Develop optimization strategies that enable
real-time performance on embedded hardware suitable for mobile robotic plat-
forms.

3. Establish Evaluation Metrics: Create comprehensive benchmarks for assessing
language-guided locomotion performance across different command types and com-
plexity levels.

4. Enable Scalable Extension: Design the architecture to support the addition of new
command types without requiring complete retraining.

These objectives are measurable through quantitative metrics including command
execution accuracy, response latency, stability measures, and generalization performance
on held-out test sets.

1.3 Expected Impact

This research is expected to make significant contributions across multiple dimensions,
from technical advancement to broader societal implications.



4 Introduction

1.3.1. Technical Impact

Advancement in Embodied AI: This work contributes to the broader field of embod-
ied artificial intelligence by demonstrating how language understanding can be directly
grounded in physical action without explicit symbolic reasoning, potentially influencing
future research directions in the field.

Scalable Robot Control: The end-to-end approach eliminates the need for manually
designed intermediate representations, potentially enabling more scalable deployment
of language-controlled robotic systems across diverse applications and environments.

Methodological Innovation: The integration of dimensionality-reduced language
embeddings directly into the RL observation space provides a computationally efficient
method for incorporating semantic information into motor control policies, which could
be adapted for other robotic control tasks.

1.3.2. Societal Impact

Democratization of Robotics: By enabling direct natural language control, this work re-
duces the technical expertise required for robot operation, making robotic systems more
accessible to non-expert users and potentially accelerating adoption across diverse sec-
tors.

Environmental Benefits: General-purpose robots that can adapt to multiple tasks
through language commands could replace numerous specialized systems, reducing man-
ufacturing overhead and resource consumption while extending the useful lifecycle of
robotic platforms.

Workforce Enhancement: Language-guided robots could work alongside humans in
various industries, requiring minimal retraining when tasks change and enabling more
flexible human-robot collaboration without displacing human workers but rather aug-
menting their capabilities.

Educational Applications: The natural language interface could make robotics more
accessible for educational applications, allowing students to program robots using natu-
ral language rather than traditional programming languages, potentially inspiring a new
generation of robotics researchers and practitioners.

1.3.3. Alignment with Sustainable Development Goals

This research aligns with several United Nations Sustainable Development Goals:

Goal 9 - Industry, Innovation and Infrastructure: By advancing robotic technologies
that can be easily deployed and reconfigured, this work contributes to building resilient
infrastructure and promoting inclusive and sustainable industrialization.

Goal 8 - Decent Work and Economic Growth: Language-guided robots can enhance
workplace safety and efficiency while creating new job categories focused on human-
robot collaboration rather than replacing human workers.

Goal 4 - Quality Education: The intuitive interface developed in this work can make
robotics education more accessible and engaging for students across different backgrounds
and technical expertise levels.
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1.4 Structure

This thesis is organized into seven main chapters, each addressing specific aspects of the
end-to-end language-guided locomotion system:

Chapter 1 - Introduction: Provides the foundational context and motivation for this
research, establishing the problem statement, objectives, and expected contributions. This
chapter positions the work within the broader landscape of artificial intelligence and
robotics while highlighting the specific challenges addressed.

Chapter 2 - State of the Art: Presents a comprehensive review of related work in
language-guided robotics, reinforcement learning for legged locomotion, and end-to-end
learning approaches. This chapter identifies gaps in current approaches and positions
our contribution within the existing literature, with particular focus on recent advances
in Vision-Language-Action models and their applications to robotics.

Chapter 3 - Problem Analysis: Provides a detailed analysis of the research problem
from multiple perspectives, including technical requirements, security considerations,
energy efficiency, and ethical implications. This chapter examines alternative approaches
and justifies the selection of the end-to-end methodology.

Chapter 4 - Proposed Solution: Details the system architecture, design decisions,
and technologies employed in the implementation. This chapter covers the language
processing pipeline, reinforcement learning integration, and real-world deployment ar-
chitecture, providing sufficient detail for reproduction of the work.

Chapter 5 - Implementation: Provides a comprehensive description of the implemen-
tation process, covering dataset creation, simulation environment setup, neural network
training, and real-world deployment. This chapter documents the various technical chal-
lenges encountered and the solutions developed to address them.

Chapter 6 - Results: Presents experimental results including quantitative perfor-
mance metrics, qualitative behavioral analysis, and validation of the system’s ability to
generalize to novel commands. This chapter includes both simulation-based evaluation
and real-world performance assessment.

Chapter 7 - Conclusions: Summarizes the key contributions of this research, dis-
cusses limitations and lessons learned, and outlines directions for future work. This
chapter also reflects on the broader implications of the research for the field of embodied
artificial intelligence.






CHAPTER 2
State of the Art

The field of language-guided robotics sits at the intersection of multiple rapidly evolving
research domains, including natural language processing, computer vision, reinforce-
ment learning, and robotic control. This chapter provides a comprehensive analysis of
the current state of research across these interconnected areas, with particular emphasis
on recent breakthroughs that have shaped the landscape of embodied artificial intelli-
gence.

2.1 Evolution of Legged Robot Locomotion

The trajectory of legged robot locomotion research has undergone a fundamental paradigm
shift over the past decade, evolving from model-based control approaches to data-driven
learning methodologies that achieve unprecedented levels of agility and robustness.

2.1.1. Classical Foundations and Model-Based Approaches

Early developments in legged robotics were grounded in classical control theory and
biomechanical insights. The Zero Moment Point (ZMP) criterion, introduced by Vukobra-
tovi¢ and Borovac [40], provided the theoretical foundation for stable bipedal locomotion
by ensuring that the ground reaction force remained within the support polygon. This
approach, while providing theoretical guarantees, resulted in conservative, quasi-static
gaits that were highly sensitive to model uncertainties and environmental variations.

The Spring-Loaded Inverted Pendulum (SLIP) model, proposed by Cavagna et al.
and later formalized for robotics applications, offered a simplified yet effective frame-
work for understanding the fundamental dynamics of running gaits [33]. This template-
based approach enabled the development of energy-efficient hopping and running be-
haviors in platforms like the MIT Cheetah series, demonstrating the potential for dy-
namic locomotion in legged systems.

Model Predictive Control (MPC) emerged as a powerful framework for handling the
complex, multi-contact dynamics of legged robots while incorporating constraints and
optimization objectives. Recent implementations have demonstrated remarkable success
in real-time applications, with systems achieving control frequencies of 1000 Hz while
maintaining stability across diverse terrains [33]. However, these approaches require
accurate dynamic models and struggle with unmodeled disturbances and terrain varia-
tions.
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2.1.2. The Reinforcement Learning Revolution

The integration of deep reinforcement learning into legged robotics represents a water-
shed moment in the field. The seminal work by Hwangbo et al. [18] demonstrated that
end-to-end reinforcement learning could produce highly dynamic and robust locomotion
behaviors in quadruped robots, achieving performance that exceeded traditional model-
based approaches. This breakthrough established the foundation for modern learning-
based locomotion control by showing that policies trained in simulation could success-
fully transfer to real hardware.

Recent advances have pushed the boundaries of what is achievable through learning-
based approaches. Margolis et al. [24] achieved record-breaking agility with their Mini
Cheetah system, demonstrating sprinting speeds up to 6.0 m/s and high-speed turning
maneuvers. Their approach achieved a Froude number of 2.9, substantially exceeding
previous applications of reinforcement learning to legged locomotion and approaching
the agility levels observed in biological systems.

The work by Radosavovic et al. [32] represents a significant milestone in humanoid
locomotion, demonstrating successful reinforcement learning-based control of Agility
Robotics” full-sized Digit humanoid robot. Their approach utilized transformer-based
architectures to process historical observations and actions, enabling adaptive behavior
that could handle outdoor environments, uneven terrain, and unexpected disturbances
without explicit modeling of environmental properties.

2.1.3. Sim-to-Real Transfer and Domain Randomization

The challenge of transferring policies trained in simulation to real-world hardware has
been addressed through sophisticated domain randomization and system identification
techniques. Modern approaches randomize not only physical parameters such as mass,
friction, and joint dynamics, but also include sensor noise, actuator delays, and environ-
mental conditions [15].

Recent work has demonstrated that comprehensive domain randomization can achieve
remarkable sim-to-real transfer performance. The study by Lee et al. [23] showed that
policies trained with sufficient randomization could handle terrains and conditions not
explicitly present in the training data, suggesting that the learned representations capture
fundamental principles of locomotion rather than memorizing specific scenarios.

The emergence of differentiable simulation frameworks such as Brax and Isaac Gym
has accelerated training speeds by orders of magnitude, enabling researchers to train
policies with millions of environment interactions in hours rather than weeks [15]. This
computational efficiency has made it feasible to explore more complex behaviors and
larger policy networks.

2.1.4. Multi-Embodiment and Unified Approaches

A significant trend in recent research is the development of unified control frameworks
that can handle multiple robot morphologies. The work by Bohlinger et al. [6] introduced
URMA (Unified Robot Morphology Architecture), demonstrating that a single learning
framework could control diverse legged platforms including quadrupeds, humanoids,
and hexapods. This approach addresses the scalability challenge by enabling knowledge
transfer across different robot designs.

The concept of morphology-agnostic representations has gained traction, with re-
searchers developing observation and action spaces that can adapt to different numbers
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of legs, joint configurations, and body geometries. This line of research suggests that fun-
damental locomotion principles may be universal across different legged embodiments,
opening possibilities for more generalizable control systems.

2.2 Integrating Natural Language into Robotic Control

The integration of natural language understanding with robotic control represents a con-
vergence of advances in large language models, multimodal learning, and embodied AL
This section examines the evolution from early symbolic approaches to current end-to-
end learning systems.

2.2.1. Foundation Models and Large Language Models

The breakthrough success of large language models has catalyzed significant interest in
their application to robotics. The work by Wang et al. [4]] provides a comprehensive
survey of opportunities and challenges in leveraging LLMs for robotic applications, iden-
tifying key areas where language models can enhance robot capabilities including task
planning, human-robot communication, and semantic understanding.

Recent work has demonstrated that pre-trained language models contain rich repre-
sentations of physical knowledge that can be leveraged for robotic tasks. Huang et al.
[17] showed that GPT-3 and similar models could generate detailed task plans and mo-
tion descriptions when prompted with robotic scenarios, suggesting that the extensive
text training of these models captures implicit understanding of physical interactions.

The development of multimodal foundation models has further advanced the field.
PaLM-E [12] represents a significant milestone in embodied language models, combin-
ing visual perception with language understanding to enable robots to ground natural
language instructions in visual observations. This work demonstrated that large-scale
multimodal training could produce models capable of following complex, multi-step in-
structions in real-world environments.

2.2.2. Vision-Language-Action Models

The emergence of Vision-Language-Action (VLA) models represents the current state-of-
the-art in language-guided robotics. These systems integrate visual perception, language
understanding, and action generation into unified neural architectures that can be trained
end-to-end.

The RT-1 system by Brohan et al. [7] pioneered the application of transformer archi-
tectures to robotic control, demonstrating that a single model could learn diverse manip-
ulation skills from natural language instructions. The subsequent RT-2 work [5] showed
that incorporating web-scale vision-language pre-training significantly improved gener-
alization to novel objects and scenarios.

Figure Al's Helix system [13] represents the most advanced VLA model to date, ca-
pable of controlling an entire humanoid upper body from natural language instructions.
Helix demonstrates several breakthrough capabilities including zero-shot manipulation
of novel objects, multi-robot coordination, and complex dexterous manipulation tasks.
The system uses a hierarchical architecture with a 7B parameter "System 2" for high-level
reasoning and an 80M parameter "System 1" for reactive control, achieving real-time per-
formance on embedded hardware.
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The development of RoboPoint [45] addresses the challenge of spatial reasoning in
VLA models by enabling precise pointing and spatial affordance prediction. This work
demonstrates that vision-language models can be instruction-tuned to predict specific
spatial locations for robotic actions, addressing one of the key limitations of purely language-
based control systems.

2.2.3. Retrieval-Augmented Generation and Embodied Intelligence

Recent advances have explored the integration of retrieval-augmented generation (RAG)
with robotic control systems. The ELLMER framework by Mon-Williams et. al. [26],
published in Nature Machine Intelligence, utilizes GPT-4 and a retrieval-augmented gen-
eration infrastructure to enable robots to complete long-horizon tasks in unpredictable
settings. This approach extracts contextually relevant examples from a knowledge base,
producing action plans that incorporate force and visual feedback while enabling adap-
tation to changing conditions.

The LEGION framework by Meng et al. [25] demonstrates how robots can achieve
lifelong learning capabilities by preserving and combining knowledge across sequential
tasks. This work addresses the critical challenge of continual learning in robotics, show-
ing how language embeddings can serve as a universal interface for knowledge repre-
sentation and transfer.

2.2.4. Multimodal Integration and Sensor Fusion

Modern language-guided robotic systems increasingly rely on sophisticated multimodal
integration approaches that combine language, vision, touch, and proprioceptive infor-
mation. The survey by HAN et al. [16] provides a comprehensive overview of multi-
modal fusion techniques for robotic applications, highlighting the importance of atten-
tion mechanisms and cross-modal alignment for effective sensor integration.

Recent work has explored the integration of tactile and language information for ma-
nipulation tasks. The Octopi system demonstrates how large tactile-language models can
enable robots to understand and reason about object properties through touch, comple-
menting visual and linguistic information [29].

The development of 3D vision-language models represents an active area of research,
with systems like ConceptFusion and ConceptGraphs enabling robots to build seman-
tic 3D representations of environments that can be queried using natural language [16].
These approaches address the challenge of grounding language understanding in three-
dimensional spatial representations.

2.3 Critique of the State of the Art

Despite remarkable progress in both language understanding and robotic control, current
approaches face several fundamental limitations that constrain their real-world deploy-
ment and scalability.

2.3.1. The Hierarchical Bottleneck

Most existing language-guided robotic systems rely on hierarchical architectures that
separate language understanding, task planning, and motor execution into distinct mod-
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ules. While this modular design offers interpretability and enables the integration of
specialized components, it introduces several critical limitations:

Semantic Gaps: Information is lost at each abstraction boundary, limiting the sys-
tem’s ability to leverage the rich semantic knowledge embedded in language models.
The translation from natural language to symbolic representations and then to motor
commands introduces opportunities for misinterpretation and reduces the system’s abil-
ity to handle nuanced instructions.

Error Propagation: Failures in any component of the hierarchy can cascade through
the entire system. Language understanding errors, planning failures, or execution prob-
lems can all lead to complete task failure, reducing overall system reliability.

Limited Adaptability: Hierarchical systems struggle to adapt to situations that re-
quire coordination across multiple levels of abstraction. Novel behaviors that span lin-
guistic understanding and motor execution are difficult to discover through this decom-
posed approach.

2.3.2. The Manipulation Bias

A critical limitation in current research is the overwhelming focus on manipulation tasks
at the expense of locomotion applications. This bias stems from several factors:

Evaluation Simplicity: Manipulation tasks often have clear success criteria and can
be evaluated in controlled laboratory environments, making them attractive for research
purposes.

Hardware Availability: Robotic arms are more accessible and standardized than
legged platforms, lowering barriers to entry for research groups.

Safety Considerations: Stationary manipulators are generally safer and easier to
work with than dynamic legged robots, particularly in academic settings.

However, this focus on manipulation has left significant gaps in our understanding
of how language can guide continuous, dynamic behaviors like locomotion. Locomo-
tion presents unique challenges that are not addressed by existing manipulation-focused
approaches:

Temporal Dynamics: Locomotion requires precise temporal coordination across mul-
tiple degrees of freedom, with timing constraints that are more stringent than typical
manipulation tasks.

Continuous Control: Unlike discrete manipulation actions, locomotion involves con-
tinuous control signals that must be generated at high frequency while maintaining sta-
bility.

Environmental Interaction: Locomotion involves complex interactions with terrain
and environmental features that are typically abstracted away in manipulation scenarios.

2.3.3. Scalability and Data Requirements

Current language-guided robotic systems face significant scalability challenges that limit
their practical deployment:

Data Hunger: Most successful systems require extensive training data, with some ap-
proaches using hundreds of thousands or millions of demonstrations. This data require-
ment makes it impractical to deploy these approaches to new tasks or domains without
substantial data collection efforts.
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Task Specificity: Despite claims of generalization, most systems demonstrate strong
performance only on tasks similar to those seen during training. True zero-shot general-
ization to genuinely novel tasks remains elusive.

Computational Requirements: State-of-the-art VLA models require significant com-
putational resources for both training and inference. While recent work has made progress
on efficiency [14], real-time deployment on resource-constrained robotic platforms re-
mains challenging.

2.3.4. Safety and Reliability Concerns

The deployment of language-guided robotic systems raises significant safety and relia-
bility concerns that are not adequately addressed by current research:

Adversarial Inputs: Language-guided systems may be vulnerable to adversarial in-
puts designed to cause unsafe behaviors. The flexibility that makes natural language
attractive as an interface also creates opportunities for misuse.

Error Modes: Unlike traditional robotic systems with well-understood failure modes,
language-guided systems may fail in unpredictable ways when faced with ambiguous or
malformed instructions.

Verification Challenges: The black-box nature of learned language-motor mappings
makes it difficult to verify system behavior or provide guarantees about safe operation.

2.4 Proposal

To address the limitations identified in current approaches, this thesis proposes a novel
end-to-end learning framework that directly maps natural language instructions to motor
actions for legged robots. Our approach makes several key contributions that distinguish
it from existing work:

2.4.1. Direct Language-Motor Grounding

Unlike hierarchical approaches that introduce multiple abstraction layers, our system
learns direct associations between language embeddings and motor commands through
reinforcement learning. This end-to-end approach offers several advantages:

Semantic Preservation: By eliminating intermediate symbolic representations, our
approach preserves the rich semantic information present in language embeddings through-
out the control pipeline.

Emergent Behavior Discovery: The direct optimization approach enables the system
to discover novel language-motor mappings that might not be captured by predefined
hierarchical decompositions.

Reduced Complexity: The unified architecture eliminates the need for careful inte-
gration of multiple specialized components, reducing system complexity and potential
failure points.

Scalability: New tasks can be added to the system without modifying the model or
fully retraining the system, for example, it is possible to modify the reward system and
add a new command to make the robot jump.
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2.4.2. Locomotion-Centered Design

This work specifically addresses the locomotion gap in current language-guided robotics
research by designing our approach around the unique requirements of continuous mo-
tor control:

Temporal Coordination: Our system is designed to handle the precise temporal co-
ordination required for stable legged locomotion, with control frequencies suitable for
dynamic balance.

Continuous Action Spaces: Unlike manipulation systems that often operate with dis-
crete action spaces, our approach generates continuous joint angle commands optimized
for smooth, stable locomotion.

Environmental Adaptation: The system is trained to handle terrain variations and
environmental disturbances that are fundamental challenges in legged locomotion.

2.4.3. Efficiency and Accessibility

To address scalability concerns, our approach emphasizes computational efficiency and
reduced data requirements:

Compact Architecture: Our policy network is designed to be lightweight enough for
real-time inference on embedded hardware while maintaining expressiveness for com-
plex language-motor mappings.

Pre-computed Embeddings: Language processing is performed offline and cached
during training, eliminating the need for real-time transformer inference.

2.4.4. Validation Through Real-World Deployment

A critical limitation of much current research is the focus on simulation-based evaluation
or controlled laboratory demonstrations. Our approach includes comprehensive real-
world validation:

Physical Platform: We demonstrate our approach on a physical hexapod robot plat-
form, validating sim-to-real transfer and real-world performance.

The combination of these contributions represents a significant advance in language-
guided robotics, addressing key limitations in current approaches while opening new
possibilities for intuitive human-robot interaction. The end-to-end learning approach of-
fers a pathway to more scalable, efficient, and accessible language-guided robotic systems
that can operate effectively in real-world environments.

This work builds upon the substantial progress made by the robotics and Al com-
munities while addressing critical gaps that limit the practical deployment of language-
guided robotic systems. By focusing specifically on the locomotion domain and utilizing
an end-to-end learning approach, we aim to demonstrate that natural language can serve
as a direct, effective interface for continuous robotic control, paving the way for more
intuitive and capable robotic systems.






CHAPTER 3
Problem Analysis

The development of an end-to-end language-guided reinforcement learning system for
hexapod robots requires systematic analysis of technical requirements, constraints, and
implementation challenges. This chapter examines the core problems that must be solved
to achieve natural language control of the JetHexa platform.

3.1 Requirements Specification

The system must bridge the gap between natural language understanding and robotic
motor control while operating within the constraints of embedded hardware deploy-
ment.

3.1.1. Target Platform Overview

This research is conducted using the Hiwonder JetHexa hexapod robot platform, a com-
mercially available research and educational robotics system. The JetHexa combines
an NVIDIA Jetson Nano B01 computing module with 18 degrees of freedom actuated
through HX-35H intelligent serial bus servos, creating a capable platform for advanced
locomotion research.

The platform weighs 2.5kg with an anodized aluminum alloy frame and operates
on an 11.1V 3500mAh lithium polymer battery providing 60-90 minutes of autonomous
operation. The default hexapod configuration employs tripod gait patterns coordinated
through ROS Melodic running on Ubuntu 18.04 LTS. Integrated sensors include a 9-axis
IMU for orientation feedback, 3D depth camera for visual perception, LiDAR for map-
ping and navigation, and a 6-channel microphone array for audio processing.

The computational constraints of the Jetson Nano platform (ARM Cortex-A57 quad-
core CPU, 4GB shared memory, 128-core Maxwell GPU) directly inform the system archi-
tecture requirements, necessitating efficient algorithms capable of real-time performance
on embedded hardware. Detailed technical specifications and capabilities are provided
in Appendix A.

15
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Figure 3.1: ROS Hexapod Robot JetHexa

3.1.2. Core Functional Requirements

The primary challenge is creating a system that can interpret diverse natural language
commands and execute corresponding hexapod locomotion behaviors. The system must
process commands in multiple languages while maintaining semantic consistency. Com-
mands range from simple directional instructions like “move forward” to complex combi-
nations such as “turn left slowly while moving backward”.

The locomotion system must coordinate all 18 degrees of freedom of the JetHexa
hexapod to produce stable, efficient gaits. This requires maintaining dynamic balance
during movement, executing smooth transitions between different locomotion patterns,
and adapting to the gait pattern produced by the RL policy.

Integration requirements center on real-time deployment. The system must operate at
10Hz control frequency, transfer effectively from Isaac Lab simulation to real hardware,
and integrate seamlessly with the ROS Melodic ecosystem running on the Jetson Nano
platform.

3.1.3. Performance and Resource Constraints

Table 3.1: Critical Performance Requirements

Metric Target Justification
Language processing latency  <100ms  Interactive responsiveness
Policy inference time <50ms Real-time control stability
Memory footprint <1GB  Jetson Nano hardware limit
Battery operational time 60-90min  JetHexa power constraints

The Jetson Nano platform imposes strict computational limits with its ARM Cortex-
A57 processor and 4GB shared memory. The system must achieve real-time performance
while maintaining acceptable accuracy across diverse command types and environmen-
tal conditions.
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3.2 Security Analysis

Language-guided robotic systems introduce distinct security challenges, as they combine
the interpretive flexibility of Al with the capacity to directly actuate physical hardware.

3.2.1. Attack Surface Analysis

A primary security concern is command injection through adversarial or malicious lan-
guage inputs that induce unsafe behaviors. Unlike traditional robotic systems with a
constrained set of predefined commands, natural language interfaces present a broader
attack surface where subtle linguistic variations may bypass safety mechanisms.

In the present system, this risk is partially mitigated through hardware-enforced joint
limits at the servo level, ensuring that physical movements remain within safe ranges re-
gardless of high-level instructions. Also, during training the system modifies certain
input values of the observation, so that the model is ready to handle malformed in-
puts. Additional defenses can be layered, including reinforcement learning-based safety
boundaries that constrain behavior during training and run time, as well as input vali-
dation mechanisms that flag or reject obviously harmful commands, and speed limits to
avoid harmful movements.

Beyond language-based inputs, the use of the Robot Operating System (ROS1) in-
troduces further considerations. ROS1 was not designed with built-in authentication or
encryption; any device connected to the same network as the ROS master node can, in
principle, publish motor commands, override sensor data, or subscribe to private data
streams. Consequently, the communication framework itself constitutes a significant at-
tack vector unless access is tightly controlled at the network level.

3.2.2. Privacy and Access Control

All language interpretation is performed locally on the Jetson Nano, eliminating depen-
dence on cloud services and reducing exposure to external interception risks. The system
processes commands in real time without persistent logging, thereby minimizing data
retention and associated privacy concerns.

However, the distributed ROS architecture necessitates strong access control mea-
sures. Since ROSI lacks native mechanisms for authentication and confidentiality, secu-
rity must be enforced at the network layer. In practice, this is achieved by isolating the
robot on a restricted LAN or VLAN, applying firewalls to limit access to specific hosts,
and using SSH tunneling when remote connections are required.

3.3 Energy and Algorithmic Efficiency Analysis

Energy efficiency directly impacts system viability, as the JetHexa’s 3500mAh battery
must power both computation and locomotion for practical operational periods.

3.3.1. Power Budget Analysis

The optimization strategy focuses on three areas: computational efficiency through Ten-
sorRT model optimization and PCA dimensionality reduction, motor efficiency through
RL-trained smooth trajectories, and intelligent power management that scales computa-
tional resources based on task requirements.
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Table 3.2: JetHexa Power Distribution

Component Power Draw Optimization Strategy
18x HX-35H Servos 18-54W Smooth trajectory generation
Jetson Nano 5-10W TensorRT optimization
Sensors (IMU, Camera) 3-6W Selective activation
Total 26-70W Target: 25-30W average

3.3.2. Computational Optimization

The critical bottleneck is real-time inference on resource-constrained hardware. Pre-
computing language embeddings eliminates transformer inference overhead when train-
ing, while PCA reduction from 384 to 128 dimensions enables effective RL learning. Ten-
sorRT optimization provides a speedup over standard PyTorch inference, making 10Hz
control achievable.

Memory optimization uses pre-allocated buffers, efficient data structures, and model
quantization to operate within the 4GB limit while maintaining multiple system compo-
nents simultaneously.

3.4 Legal and Ethical Framework Analysis

The deployment of language-guided robots raises questions about responsibility attribu-
tion, safety standards, and societal impact that must be addressed proactively.

3.4.1. Liability and Safety Considerations

The system creates a complex responsibility chain from user commands through Al inter-
pretation to physical actions. Clear documentation of system capabilities and limitations
becomes essential for establishing appropriate liability frameworks. The implementation
includes multiple safety layers: hardware joint limits, learned behavioral boundaries,
and emergency stop mechanisms.

Compliance with emerging robotics safety standards requires systematic hazard anal-
ysis and risk mitigation. The system design emphasizes predictable failure modes and
graceful degradation rather than unpredictable Al behavior.

3.4.2. Bias and Accessibility

Language models can exhibit cultural and linguistic biases that affect robot behavior. The
multilingual training approach helps identify and mitigate these biases, while inclusive
design principles ensure accessibility across different user groups and language profi-
ciencies. The natural language interface has potential to democratize robot operation by
reducing technical barriers.

3.5 Risk Analysis

System deployment faces technical, operational, and safety risks that require comprehen-
sive mitigation strategies.
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3.5.1. Critical Risk Assessment

Table 3.3: Primary Risk Analysis

Risk Probability Impact Mitigation

Sim-to-real failure Medium High Domain randomization
Real-time performance Low High Profiling

Language misinterpretation Medium Medium Training

Hardware failure Low Medium Software limits

User misuse Medium Low Domain randomization

The highest-impact risk is simulation-to-reality transfer failure, which could render
the entire approach ineffective. Comprehensive domain randomization during training,
systematic calibration procedures, and progressive hardware validation address this con-
cern. Real-time performance risks are mitigated through extensive optimization and con-
tinuous monitoring.

3.5.2. Safety and Operational Risks
Hardware failures represent manageable risks through redundant safety systems and

graceful degradation protocols. User misunderstanding poses moderate risks that clear
documentation, progressive capability disclosure and good model training can address.

3.6 lIdentification and Analysis of Possible Solutions

Multiple architectural approaches could address language-guided locomotion, each with
distinct trade-offs in complexity, performance, and capability.

3.6.1. Alternative Architecture Comparison

Table 3.4: Solution Architecture Comparison

Approach Complexity Flexibility Performance Interpretability
Hierarchical Planning High Low Medium High
LLM Integration Very High ~ Very High Low Medium
End-to-End Learning Medium High High Low

Hierarchical approaches separate language understanding from motor control through
symbolic representations. While offering interpretability, they suffer from information
loss at abstraction boundaries and limited flexibility for novel commands.

Large language model integration offers superior language understanding but faces
prohibitive computational requirements for embedded deployment. The models” text-
based outputs are poorly suited for continuous motor control tasks.

3.6.2. End-to-End Approach Justification

The selected end-to-end approach directly integrates language embeddings into the rein-
forcement learning observation space, enabling unified optimization of language under-
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standing and motor control. This architecture preserves semantic information through-
out the pipeline while maintaining computational efficiency for embedded deployment.

Key advantages include adaptive discovery of novel language-motor mappings, se-
mantic preservation without abstraction losses, and deployment efficiency through com-
pact models. The approach aligns with research objectives of demonstrating direct language-
guided control while meeting practical constraints of real-time embedded operation.

The training complexity and interpretability challenges are acceptable trade-offs given
the innovation potential and superior performance characteristics. Comprehensive test-
ing and validation procedures address the verification challenges inherent in learned sys-
tems.

This analysis establishes the technical foundation for the proposed end-to-end so-
lution, identifying key requirements, constraints, and design decisions that inform the
implementation approach detailed in the following chapters.



CHAPTER 4
Proposed Solution

This chapter presents the comprehensive solution for developing an end-to-end language-
guided reinforcement learning system for hexapod robot locomotion. The proposed ap-
proach addresses the fundamental challenge of directly mapping natural language in-
structions to motor actions without requiring intermediate symbolic representations or
hierarchical planning modules.

4.1 Solution Overview

The chosen solution implements a unified end-to-end learning paradigm that integrates
natural language understanding directly into the reinforcement learning control loop.
This approach eliminates the information loss and error propagation inherent in tradi-
tional hierarchical architectures while enabling real-time deployment on resource-constrained
embedded hardware.

The solution consists of three main phases: simulation-based training using Isaac Lab
with comprehensive domain randomization, systematic dataset development with mul-
tilingual coverage, and real-world deployment through a distributed ROS architecture
optimized for the JetHexa hexapod platform.

4.2 Work Plan

4.2.1. Development Phases and Timeline

The project development was structured into five distinct phases, each with specific ob-
jectives, deliverables, and time allocations:

Table 4.1: Project Development Phases and Time Allocation

Phase  Objectives Time
Phase1 Dataset creation and language processing Month 1
Phase2 Simulation environment setup Month 2
Phase3 RL training and optimization Month 3
Phase4 Real-world deployment system Month 4
Phase 5 Integration testing and validation Month 5
Total 5 Months

21
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Proposed Solution

3)

Phase 1: Dataset Creation and Language Processing Pipeline (Month 1)

* Systematic generation of multilingual locomotion commands
* Sentence transformer integration and embedding generation
¢ PCA dimensionality reduction implementation and validation

¢ Initial language processing pipeline development
Phase 2: Simulation Environment Setup and Initial Training (Month 2)

e Isaac Lab environment configuration for JetHexa hexapod
¢ Custom command manager integration for language embeddings
¢ Basic RL training pipeline establishment

* Initial policy network architecture development

Phase 3: Reinforcement Learning Optimization and Domain Randomization (Month

* Progressive curriculum development and training

Comprehensive domain randomization implementation

Reward function tuning for hexapod-specific requirements

Policy optimization and convergence validation
Phase 4: Real-World Deployment System Development (Month 4)

* Distributed ROS architecture implementation
¢ TensorRT optimization for embedded deployment
¢ Hardware calibration and servo interface development

* Safety system integration and testing

Phase 5: Integration Testing and Performance Validation (Month 5)

End-to-end system testing and validation

Performance benchmarking and optimization

Real-world deployment validation

* Documentation and results analysis
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4.2.2. Critical Path Analysis and Risk Management

Some critical dependencies that made the development move around different phases
were:

Sim-to-Real Transfer: Hardware calibration proved more complex than anticipated,
requiring additional hours in Phase 4 for systematic servo mapping and validation.

Embedding Dimensionality Challenge: The discovery that full-dimensional embed-
dings prevented RL learning required significant replanning in Phase 3

Hardware Testing and Validation: Even on the last phase, there were still multiple
bugs that weren’t found until the model was deployed on the actual hardware, which
required full retraining and calibration of the model and the simulation scenario, which
proved challenging and moved back the project to different phases of the development
process until a working model on the hardware was produced.

4.3 Budget

4.3.1. Hardware and Software Resources

Table 4.2: Hardware and Software Budget

Component Cost (€) Justification
Hardware:

JetHexa Hexapod Robot 1,050 Primary research platform
JetHexa customs 200 Import tariffs
Laptop NVIDIA RTX 4070 GPU 400 RL training acceleration
Development Workstation 850 Simulation and development
2 additional servos 50 Failure tolerance
Software:

Isaac Lab/Isaac Sim 0 Freely under individual license
ROS Melodic 0  Open source robotics framework
TensorRT 0 Included with NVIDIA ecosystem
Development Tools 0 Open source (Python, Git, etc.)

Power consumption:

Training compute hours 50 Energy usage for training/testing
Robot charging 2 Robot battery charging
Total Hardware 2,500
Total Software 0
Total Infrastructure 52

Grand Total 2,552




24 Proposed Solution

4.4 Solution Design

4.4.1. System Architecture

The solution architecture implements a unified end-to-end learning paradigm that di-
rectly integrates language understanding into the robotic control loop without hierarchi-
cal decomposition.

Language
Command
"walk for-
ward ilowly JetHexa
Sentence Trans- , ROb{’tb
saac La
former (+pca) st 18 DOF
all-MiniLM-L6-v2 i 08
v Actor 7t(alo) Position control
Embedding MLP: 152—512—256—128—18
e € RI?8 Joint positions 6target
P4 ~ Y
Observation Pnga"anaelgtmg
0 € RI%2 Be et

Clipped objective

Robot State ~ —

Gravity ¢ € R Critic V(o)

Ang vel § € R® MLP: 152—512—256—128—1
Prev actions a;_; € R'8

Total: 24 dim
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Figure 4.1: End-to-end system architecture showing direct integration of language embeddings
into the reinforcement learning control loop

Core Components:

* Language Processing Module: Transforms natural language commands into 128-
dimensional semantic embeddings using the all-MiniLM-L6-v2 sentence transformer

* Observation Fusion: Combines language embeddings with proprioceptive sensor
data (gravity, angular velocity, action history) into a unified 152-dimensional obser-
vation vector

* Policy Network: Actor-critic architecture with shared feature extraction optimized
for language-motor integration

* Training Environment: Isaac Lab simulation with 4096 parallel environments and
comprehensive domain randomization

¢ Deployment System: Distributed ROS architecture for real-time execution on JetHexa
hardware

Key Architectural Innovations:

* Direct semantic grounding without symbolic intermediate representations

e PCA dimensionality reduction enabling effective RL learning from language em-
beddings

¢ Multilingual capability through universal sentence embeddings

* Real-time embedded deployment through TensorRT optimization
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4.4.2. Detailed Design
Language Processing Pipeline

The language processing pipeline implements a three-stage transformation from natural
text to actionable semantic representations:

Natural Language
Command

Tokenization &

. BERT tokenization
Encoding
nten

Sentence all-MiniLM-L6-v2

Transformer
PCA R ion

C eductio Preserves 90.84% variance
384D — 128D

Policy-Ready

Embedding

Figure 4.2: Detailed language processing pipeline with dimensionality reduction

Stage 1 - Tokenization and Encoding:

¢ BERT-compatible tokenization handles multilingual input
¢ Maximum sequence length: 128 tokens

¢ Padding and attention mask generation for variable-length inputs
Stage 2 - Semantic Embedding Generation:

¢ all-MiniLM-L6-v2 model with 22M parameters

* Mean pooling of last hidden states

¢ L2 normalization for consistent embedding magnitudes

¢ QOutput: 384-dimensional dense vectors

Stage 3 - Dimensionality Reduction:

¢ PCA fitted on 922 training commands

* Reduction from 384D to 128D (67% compression)

¢ Preserves 90.84% of semantic variance

¢ Critical for enabling RL policy learning
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Reinforcement Learning Integration

The RL integration implements a unified actor-critic architecture that processes the com-
bined observation space:

Language: 128D

ira\”ty: 3D Observation Vector
ngular vel: 3D

Prev actions: 18D 152D

Total: 152D

Fully Connected
512 units, ELU

Fully Connected
256 units, ELU

Fully Connected
128 units, ELU

N

Actor Head Critic Head
18D (joint targets) 1D (value estimate)

Figure 4.3: Policy network architecture with observation space decomposition

Network Architecture Details:

¢ Shared encoder with progressively reducing dimensionality
e ELU activation functions for smooth gradients
¢ Orthogonal weight initialization for stable training

* Separate actor and critic heads for PPO algorithm
Observation Space Components:

* Language embedding (128D): Semantic command representation

Projected gravity (3D): Robot orientation relative to gravity

Angular velocity (3D): Rotational motion feedback

* Previous actions (18D): Joint position history for smooth control

Real-World Deployment Architecture

The deployment system implements a distributed ROS architecture for real-time opera-
tion:
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Figure 4.4: JetHexa Hexapod Robot

Node Responsibilities:

generation

* Language Command Node: TensorRT-optimized transformer inference, embed-
ding generation and PCA transformation
* RL Inference Node: Policy execution, observation fusion, and real-time joint target

* Robot Driver Node: Hardware interface, servo calibration, and safety monitoring

Text Commands

IMU Sensor
(Human Input) Data

Language Command 128D RL Inference
Node

Node

\
Joint Targets

Robot Driver \
Node

Servo Commands

JetHexa Hardware
18 HX-35H Servos

Figure 4.5: Distributed ROS deployment architecture with performance specifications
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4.5 Technology Used

4.5.1. Development Environment and Tools

Table 4.3: Development Environment and Toolchain

Category Technology Version Purpose
Simulation Isaac Lab 0.40.6 RL training environment
Isaac Sim 45.0 Physics simulation
RSL-RL 244 RL
Machine Learning Torch 2.5.1+cul2l Neural network training
TensorRT 8.2.1.8 Inference optimization
transformers 418.0-py3  Language embeddings
scikit-learn 1.5.4-cp36 ~ PCA dimensionality reduction
tokenizers 0.12.1-cp36  Tokenization & encoding
Robotics ROS Melodic 1.14.13 Robot communication
JetHexa SDK 1.0 Hardware interface
OpenCV 4.11.0.86 Computer vision
Development Python 3.10.12 Primary programming language
Python (Jethexa) 3.6 Robot inference
Git 2.34.1 Version control
VS Code 1.103.2 Development environment

4.5.2. Hardware Platform Selection
Training Hardware:

¢ Laptop NVIDIA RTX 4070 GPU: 4608 CUDA cores, 8GB GDDR6X memory
¢ 13th Gen Intel® Core™ i7-13620H x 16
* 32GB DDR4 RAM: High-bandwidth memory for parallel environments

¢ Training performance: >280,000 simulation steps/second with 4096 parallel envi-
ronments

Deployment Hardware:

¢ NVIDIA Jetson Nano B01: ARM Cortex-A57 quad-core, Maxwell GPU (128 cores)
* 4GB LPDDR4 shared memory: Constrained but sufficient for optimized models

* 32GB microSD storage: Adequate for system and model storage

Robot Platform:

JetHexa hexapod: 18 DOF with HX-35H intelligent servos

IMU sensor: 9-axis orientation and motion sensing

11.1V LiPo battery: 3500mAh capacity for 60-90 minutes operation

Integrated safety systems: Emergency stop, joint limits, graceful startup
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4.5.3. Software Architecture Decisions

Simulation Platform Selection:

Isaac Lab was chosen over alternatives (Gazebo, PyBullet, MuJoCo) for several critical
advantages:

* GPU-accelerated parallel simulation (4096 environments)

¢ High-fidelity physics simulation with accurate contact modeling
¢ Proven sim-to-real transfer capabilities for legged robotics
Deployment Framework Selection:

ROS Melodic was selected despite being an older version due to:

* Native compatibility with Ubuntu 18.04 on Jetson Nano

* Proven real-time performance for robotics applications

¢ Extensive documentation and community support

¢ Already installed on Jethexa Jetson Nano

4.5.4. Optimization and Performance Strategies
Training Optimization:

¢ Parallel environment scaling: 4096 simultaneous simulations
¢ GPU memory optimization: Efficient tensor operations and batch processing

* Domain randomization: Comprehensive parameter variation for robust sim-to-real
transfer

Deployment Optimization:

¢ TensorRT model optimization: inference speedup through graph optimization
¢ Asynchronous processing: Non-blocking language processing and motor control

* Memory management: Pre-allocated buffers and efficient data structures

This comprehensive technology selection and implementation strategy ensures opti-
mal performance across the entire development and deployment pipeline while main-
taining practical feasibility within resource constraints.






CHAPTER 5

Implementation

This chapter provides a comprehensive account of the implementation process for the
end-to-end language-guided reinforcement learning system. The development followed
a systematic approach across five phases, progressing from foundational dataset creation
through sophisticated simulation training to real-world deployment on the JetHexa hexa-
pod platform. Each phase addressed specific technical challenges while building toward
a complete working system capable of interpreting natural language commands and ex-
ecuting corresponding locomotion behaviors.

5.1 Development Methodology

The implementation process was structured into five distinct phases, each with specific
objectives and deliverables:

1. Dataset Creation and Language Processing Pipeline (Month 1)
2. Simulation Environment Development (Month 2)

3. Reinforcement Learning Training and Optimization (Month 3)
4. Real-World Deployment System Architecture (Month 4)

5. Integration Testing and Performance Validation (Month 5)

Each phase included systematic testing and validation to ensure reproducibility and
enable iterative improvement. The methodology emphasized modular design, compre-
hensive logging, and systematic debugging to address the inherent complexity of inte-
grating natural language processing with robotic control.

5.2 Phase 1: Dataset Creation and Language Processing Pipeline

5.2.1. Multilingual Command Dataset Development

The foundation of the language-guided system required creating a comprehensive dataset
that could capture the semantic diversity of natural locomotion commands while main-
taining precise velocity target mappings. The dataset underwent four major iterations
based on systematic analysis of training performance and policy behavior patterns.

31
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The final dataset contains 922 commands across multiple languages (English, Span-
ish, German, French, Italian, Chinese...), with each command mapped to specific velocity
targets appropriate for hexapod locomotion:

{

"id": 148,

"phrase”: "move forward slowly",

"linear_x": 0.3, # m/s, forward velocity
"linear_y": 0.0, # m/s, lateral velocity
"angular_z": 0.0, # rad/s, rotational velocity

"embedding_file": "embeddings/148.npy"

Listing 5.1: Command dataset structure example

The velocity ranges were carefully selected based on JetHexa hardware constraints for
most commands, although maximum range was exaggerated to push robot boundaries
during training: linear X velocity [-2.0, 2.0l m/s, linear Y velocity [-2, 2] m/s, and angular
Z velocity [-2.0,2.0] rad/s.

5.2.2. Dataset Generation Using Large Language Models

The creation of a diverse and representative command dataset posed significant chal-
lenges in capturing natural language variation while maintaining precise velocity map-
pings. To address this challenge, we employed a systematic approach using Claude 3.5
(Anthropic), a state-of-the-art large language model, to generate linguistically diverse
commands through iterative prompting strategies.

Iterative Dataset Expansion Process

The dataset generation followed a structured four-phase approach, with each phase ad-
dressing specific limitations identified through training analysis:

Phase 1: Core Command Generation (Commands 0-88) Initial dataset creation fo-
cused on establishing fundamental movement patterns across multiple languages. The
generation prompt specified:

# Prompt template for core command generation
"Generate movement commands for a robot with the following structure:

3|— Include variations: formal, informal, typos, abbreviations

- Languages: English, Spanish, German, French, Italian , Chinese
— Movement types: forward, backward, turn, stop, lateral
Velocity mappings: linear_x, linear_y, angular_z

Format: CSV with '’ delimiter to avoid text conflicts"

Listing 5.2: Initial generation prompt structure

This phase produced 89 foundational commands covering basic locomotion primi-
tives with initial multilingual support.

Phase 2: Variation Expansion (Commands 89-351) Analysis of initial training re-
vealed limited linguistic diversity. The second generation phase emphasized:

¢ Systematic typo injection ("walk forward" — "wlk forwrd")
¢ Colloquial expressions ("yo dawg move it", "aight turn left")

¢ Formal/technical language ("execute primary locomotive protocol")
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"mon "non

* Emotional modifiers ("please”, "urgently", "carefully")

¢ Compound movements ("curve left", "diagonal forward right")

Phase 3: Multilingual and Semantic Expansion (Commands 352-600) The third phase
addressed cross-linguistic generalization:

# Languages systematically added with movement variations

French: "avance s’il vous pla t", "tournez gauche"”
German: "vorw rts gehen", "nach links drehen”
Italian: "vai avanti", "gira a sinistra”

Portuguese: "ir para frente", "virar esquerda”

Listing 5.3: Multilingual expansion strategy

Additionally, this phase introduced:

non "non

e Novel movement verbs ("hustle", "saunter”, "meander")

* Directional specifications ("move @ 30 degrees left")

¢ Contextual commands ("patrol”, "explore", "investigate")

Although some of this commands suggest a more complex movement pattern, this
verbs usually were mapped to simple velocities, for example, "investigate" just maps to a
regular forward movement, and "move @ 30 degrees left" just maps to a certain velocity
when turning left.

Phase 4: Forward Movement Augmentation (Commands 601-922) Training analy-
sis revealed systematic underperformance in forward movement execution. The final
phase specifically addressed this imbalance through targeted augmentation, also given
that forward movement can help derive in other movements and policies once it has been
learned:

# Targeted generation for forward movement variations
"Generate 300+ forward movement commands emphasizing:

- Speed variations: [0.2, 0.5, 1.0, 2.0] m/s

- Linguistic diversity: single words to complex phrases
— Urgency levels: ‘GO GO GO’ to ’“gently advance’

- Semantic richness: ’“proceed’, ’advance’, ’forge ahead’"

Listing 5.4: Forward movement augmentation focus

This phase increased forward commands from approximately 30% to 45% of the total
dataset, providing the model with stronger signal for this critical movement type.

Quality Control and Validation

Each generation phase included systematic validation:

1. Velocity Mapping Verification: Ensuring semantic consistency between command
intent and numerical targets

2. Linguistic Diversity Analysis: Measuring vocabulary richness and syntactic vari-
ation

3. Cross-linguistic Balance: Maintaining representative samples across languages

4. Typo Realism: Validating that introduced errors reflected natural typing patterns
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Final Dataset Composition

The final dataset of 922 commands achieved the following distribution:
Language Distribution:
¢ English: 598 commands (65%) - Primary language for maximum coverage

¢ Spanish: 142 commands (15%) - Second most represented for Romance language
coverage

* German: 76 commands (8%) - Germanic language representation
¢ French: 68 commands (7%) - Additional Romance language variation
¢ Other (Italian, Chinese, Portuguese): 38 commands (4%) - Exploratory multilingual

support

Table 5.1: Dataset language statistics

Language Value
Total commands 922
English 598 (65%)
Spanish 142 (15%)
German 76 (8%)
French 68 (7%)
Other 38 (4%)

Movement Type Distribution:

¢ Forward movements: 412 commands (45%) - Emphasized due to training require-
ments

¢ Turn commands: 198 commands (22%) - Balanced left/right rotations

¢ Backward movements: 125 commands (14%) - Reverse locomotion variants
¢ Stop commands: 89 commands (10%) - Critical for safety and control

¢ Lateral movements: 62 commands (7%) - Sideways motion capabilities

¢ Combined movements: 36 commands (4%) - Complex multi-axis commands

Table 5.2: Dataset movement distribution

Movement Distribution Count
Forward commands 412 (45%)
Backward commands 125 (14%)
Turn commands 198 (22%)
Stop commands 89 (10%)
Lateral commands 62 (7%)
Combined movements 36 (4%)
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This systematic approach to dataset generation leveraged the language model’s ca-
pability to produce naturalistic variations while maintaining precise control over the dis-
tribution and characteristics of generated commands. The iterative refinement process,
guided by training performance analysis, resulted in a dataset that balances linguistic
diversity with practical requirements for robotic control training. The heavy emphasis
on forward movements (45%) in the final dataset reflects the empirical finding that this
fundamental locomotion mode required additional training signal for reliable execution.

5.2.3. Test Set Design for Generalization Evaluation

To rigorously evaluate the model’s language understanding capabilities beyond mem-
orization, we designed a comprehensive test set of 120 commands that systematically
probes different aspects of linguistic generalization. The test set was generated using the
same language model (Claude 3.5) but with carefully crafted prompts to ensure distinct
characteristics from the training data.

Test Set Generation Strategy

The test set generation employed a stratified approach to create commands across ten
distinct categories, each designed to evaluate specific generalization capabilities:

Category Definitions and Generation Process:

1. Close Variations (25 commands): Commands semantically similar to training data
but with different phrasing. Generation focused on synonym substitution and
grammatical restructuring while maintaining core meaning.

2. Novel Concepts (19 commands): Commands expressing movement ideas absent
from training data, such as "navigate to my position" or "return to start". These test
compositional understanding and semantic extrapolation, although many of them
cannot be easily mapped to simple velocities given their complex meaning, so they
can easily be misinterpreted.

3. Novel Verbs (14 commands): Movement verbs not present in training ("plow",

"scurry", "tiptoe", "glide") to evaluate semantic grounding of unfamiliar locomotion
descriptors.

4. Multilingual (10 commands): New phrases in languages present in training but
with unseen vocabulary and structures, testing cross-linguistic generalization.

5. Slang/Informal (10 commands): Contemporary colloquialisms ("yo dawg move it",
"no cap go straight") absent from training data, evaluating robustness to register
variation.

6. Formal/Technical (10 commands): Overly formal language ("execute primary loco-
motive protocol”, "commence sinistral rotation") testing understanding of technical
register.

7. Typo Variations (10 commands): Realistic typing errors following different pat-
terns than training typos, assessing robustness to input noise.

8. Uncertain/Hedged (8 commands): Commands with uncertainty markers ("umm

non

like go forward i guess", "maybe walk ahead?") not present in training.
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9. Abbreviations (7 commands): Shortened forms ("fwd", "bkwd", "lft") testing un-
derstanding of common abbreviations.

10. Emphasis/Urgency (7 commands): Commands with strong emotional markers ("GO
GO GO GO GO", "STOP!!!") evaluating response to urgency.

Movement Distribution Balancing

The test set movement distribution was designed to probe known weaknesses while
maintaining sufficient coverage:

SR

movement_distribution = {
"forward": 45, # 38% — Emphasize problematic movement
"backward": 12, # 10% — Proportional representation
"turns": 30, # 25% — Split left/right equally
"stop": 15, # 13% — Critical safety command
"lateral": 8, # 7% — Less common movement
"combined": 10 # 8% — Complex multi—axis commands

Listing 5.5: Test set movement distribution

The forward movement emphasis (38%) in the test set specifically targets the identi-
fied training weakness, providing additional evaluation coverage for this critical locomo-
tion mode and also adapting to the training imbalance introduced in the training set.

Quality Assurance Measures

Test set generation included several validation steps:

1. Training Set Exclusion: Automated checking ensured no test command appeared
verbatim in the training set

2. Semantic Distance Verification: Each test command was verified to maintain ap-
propriate semantic distance from training examples within its category

3. Velocity Mapping Consistency: Target velocities were assigned following the same
semantic rules as training data to ensure fair evaluation

4. Cross-Category Balance: Commands were distributed to prevent category-specific
biases in movement types

Test Set Characteristics
The final test set of 120 commands achieved:
¢ Balanced representation across 10 linguistic categories

* Movement distribution targeting known model weaknesses

¢ Average command length: 3.1 words (slightly higher than training)

Language distribution: 92% English, 8% other languages

Novel vocabulary coverage: 42% of commands contain words absent from training
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This systematic approach to test set generation ensures comprehensive evaluation of
the model’s true language understanding capabilities, distinguishing between memo-
rization of training patterns and genuine semantic comprehension. The stratified design
enables detailed analysis of specific generalization failures, providing insights for future
improvements in language-guided robotic control systems.

5.2.4. Principal Component Analysis Optimization

A critical implementation challenge emerged during initial training attempts: the full
384-dimensional embeddings from the sentence transformer model created severe learn-
ing bottlenecks for the RL policy. The high dimensionality prevented effective learning of
language-motor associations, necessitating systematic dimensionality reduction analysis.

PCA Variance Analysis Methodology:

To determine the optimal number of principal components, we conducted compre-
hensive variance preservation analysis on the complete training dataset of 922 embed-
dings. Principal Component Analysis was fitted on all training embeddings to analyze
the cumulative explained variance across different dimensionality reduction targets.
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Figure 5.1: Cumulative explained variance as a function of principal components for language
command embeddings. The plot shows the trade-off between dimensionality reduction and in-
formation preservation, with key decision points at 90% and 95% variance thresholds.

Variance Preservation Analysis:

The systematic analysis revealed the following variance preservation characteristics
across different component counts:
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Table 5.3: PCA Dimensionality Reduction Analysis

Components Variance Preserved Compression Ratio

8 34.59% 48:1
16 47.09% 24:1
32 61.37% 12:1
64 76.70% 6:1
92 84.52% 4.2:1

128 90.84% 3:1
256 98.89% 1.5:1

Component Selection Rationale:

The selection of 128 components was based on several converging factors:

* Variance Preservation Threshold: 128 components preserve 90.84% of the original
semantic variance, exceeding the commonly used 90% threshold for maintaining
information content while achieving substantial dimensionality reduction.

* RL Learning Feasibility: Preliminary experiments indicated that dimensions above
128 continued to create learning difficulties for the RL policy, while dimensions
below 128 showed degraded language understanding performance.

¢ Computational Efficiency: The 3:1 compression ratio (384—128 dimensions) pro-
vides significant computational benefits during training and inference while main-
taining semantic richness.

Implementation Strategy:

The PCA transformation was implemented with careful attention to proper train/test
separation:

s|pca. fit (training_embeddings_384d)

5|# Transform both training and test embeddings using same model

# Fit PCA exclusively on training data
pca = PCA(n_components=128)

reduced_train = pca.transform (training_embeddings_384d)
reduced_test = pca.transform (test_embeddings_384d)

# Verify variance preservation
variance_preserved = sum(pca.explained_variance_ratio_)
print (f"Variance preserved: {variance_preserved:.4f}") # 0.9084

Listing 5.6: PCA implementation with proper experimental design

This methodological approach ensured that no information from the test set influ-
enced the dimensionality reduction, maintaining proper experimental validation while
enabling effective RL learning from semantically meaningful, compact representations.

The 128-component solution represents an optimal balance between semantic preser-
vation and learning feasibility, enabling the RL policy to successfully learn direct language-
motor mappings while maintaining the rich semantic content necessary for diverse com-
mand interpretation.
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5.3 Phase 2: Simulation Environment Development

5.3.1. Isaac Lab Framework Architecture

Isaac Lab provides a GPU-accelerated robotics simulation framework built on NVIDIA
Omniverse. The framework represents a significant advancement over traditional CPU-
based simulators by leveraging GPU parallelization to run thousands of environments si-
multaneously. This massive parallelization is essential for reinforcement learning, which
requires millions of environment interactions to learn complex behaviors.

The simulation architecture operates on several key principles:

Parallel Environment Execution: Instead of running environments sequentially, Isaac
Lab spawns thousands of identical environments on GPU memory, allowing simultane-
ous physics simulation and data collection. Each environment maintains its own state
while sharing computational resources efficiently.

Vectorized Operations: All computations (physics updates, reward calculations, ob-
servations) are vectorized across environments using PyTorch tensors, enabling efficient
GPU utilization and avoiding CPU-GPU memory transfers.

Scene Management: The framework manages complex scenes with multiple assets,
terrains, and sensors while maintaining real-time performance through optimized mem-
ory layout and efficient data structures.

@configclass
class LocomotionLanguageRoughEnvCfg(ManagerBasedRLEnvCfg) :
# Scene settings for massive parallelization
scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=2.5)

# Physics simulation parameters
def __post_init__(self):

self.decimation = 20 # 20:1 decimation ratio

self .episode_length_s = 20.0 # 20-second episodes
self.sim.dt = 0.005 # bms physics timestep (200Hz)
self .sim.render_interval = self.decimation # Render at 10Hz

Listing 5.7: Isaac Lab environment configuration

This configuration enables 4096 parallel environments with 200Hz physics simulation
decimated to 10Hz control frequency, matching the target deployment specifications.

5.3.2. JetHexa Robot Model Integration

The JetHexa hexapod model implementation required precise matching of physical prop-
erties to enable effective sim-to-real transfer. Hiwonder provides an Unified Robot De-
scription Format (URDF) file containing a visual model of the robot upon request to the
technical support team, although the actual accurate physics parameters of the joints was
not available. It was necessary to include manually accurate mass distribution, joint lim-
its, and actuator characteristics based on the HX-35H servo specifications. Finally it was
mandatory to convert this file to Universal Scene Description (USD) format so that it
could be understood by Isaac Sim.

JETHEXA_CFG = ArticulationCfg(
spawn=sim_utils . UsdFileCfg (
usd_path="models/jethexa.usd",
activate_contact_sensors=True,
rigid_props=sim_utils.RigidBodyPropertiesCfg (
disable_gravity=False,
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max_linear_velocity=1000.0,
max_angular_velocity=1000.0,

),

)

init_state=ArticulationCfg.InitialStateCfg (
pos=(0.0, 0.0, 0.15), # Starting height for stability
joint_vel={".x": 0.0},

),

actuators={

"leg_coxa": ImplicitActuatorCfg(
joint_names_expr=["coxa_joint_.x"],
effort_limit=3.5, # HX-35H servo torque limit
velocity_limit=6.0,
stiffness={"coxa_joint_.+": 4.61194},
damping={"coxa_joint_.+": 0.00184},

),

# Similar configurations for femur and tibia joints

b

Listing 5.8: JetHexa robot configuration with actuator modeling

The actuator configuration uses implicit position control with stiffness values to sim-
ulate servo behavior accurately. The effort and velocity limits match the HX-35H servo
specifications to ensure realistic force and speed constraints.

The stiffness parameter controls how strongly the actuator resists deviation from its
target position, while damping determines how quickly oscillations around the target
position are reduced. However, for more accurate simulation, it would be beneficial to
characterize the actual servo response through physical testing of the HX-35H servos,
measuring their step response, overshoot, and settling time to derive more realistic stiff-
ness and damping parameters that better represent the true dynamic behavior of the
hardware.

Figure 5.2: JetHexa USD model visualization on Isaac Sim

5.3.3. Language Command System Integration

The language command system represents the core innovation enabling direct integra-
tion of semantic understanding into the RL training loop. The system loads the multilin-
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gual dataset, applies PCA transformation, and provides embeddings to the policy during
training.

class LanguageCommand (CommandTerm) :
def __init__(self, cfg: LanguageCommandCfg, env: ManagerBasedRLEnv):

super () .__init__(cfg, env)

# Load command dataset
self .commands = self._load_commands_from_csv(cfg.csv_path)

# Setup PCA transformation from training data
if cfg.use_pca and not cfg.pca_preprocessed_dir:
self._fit_pca_from_training_data ()

# Pre-load all embeddings for efficient GPU training
self._preload_embeddings_to_gpu ()

def _fit_pca_from_training_data(self):
"""Fit PCA model exclusively on training embeddings.
train_embeddings = []
for and in self.train_commands:
embedding = np.load(self.embeddings_base_dir / ecmd[ embedding_file”’

1))
train_embeddings .append (embedding)

"o

self.pca_transformer = PCA(n_components=self.cfg.pca_dimension)
self.pca_transformer. fit (np.array (train_embeddings))

def compute(self, dt: float) —> torch.Tensor:
"""Return current language embeddings for all environments."""
return self.current_embeddings

Listing 5.9: Language command manager implementation

5.3.4. Observation Space Architecture

The observation space design integrates heterogeneous data types into a unified repre-
sentation suitable for neural network processing. The 152-dimensional observation vec-
tor combines semantic information from language with proprioceptive robot state.

N

@configclass
class ObservationsCfg:
@configclass
class PolicyCfg (ObsGroup) :
# Robot orientation via projected gravity (3D)
projected_gravity = ObsTerm/(
func=mdp. projected_gravity,
params={"asset_cfg": SceneEntityCfg("robot")},
noise=Unoise (n_min=-0.05, n_max=0.05)

)

# Angular velocity from IMU (3D)

imu_ang_vel = ObsTerm/(
func=mdp.imu_ang_vel,
params={"asset_cfg": SceneEntityCfg ("imu")},
noise=Unoise (n_min=-0.2, n_max=0.2)

)

# Language command embedding (128D)
language_embedding = ObsTerm (
func=mdp. generated_commands,
params={"command_name": "language_command"}
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# Previous joint actions for temporal consistency (18D)
actions = ObsTerm (
func=mdp. last_joint_pos_target,
params={"asset_cfg": SceneEntityCfg("robot")},
clip=(-50, 50)

Listing 5.10: Observation space configuration

This configuration creates a unified observation space where the policy learns to as-
sociate language semantics with current robot state and required motor actions.

5.3.5. Terrain Generation and Domain Randomization

Training occurs on rough terrain generated using Isaac Lab’s procedural terrain system.
The terrain provides essential domain randomization for robust policy learning and sim-
to-real transfer.

terrain = TerrainImporterCfg (
prim_path="/World/ground",
terrain_type="generator",
terrain_generator=ROUGH_TERRAINS_CFG,
max_init_terrain_level =5,
physics_material=sim_utils . RigidBodyMaterialCfg(
static_friction=1.0,
dynamic_friction=1.0,

),

Listing 5.11: Terrain configuration for domain randomization
The rough terrain includes multiple challenging surface types:

* Flat areas for basic movement learning

Sloped surfaces (+15 degrees) for stability training

Step patterns with varying heights (0.05-0.2m)

Rough patches with irregular surfaces

Stairs and platforms for climbing behavior

| h MIQ‘IT‘I

I

Figure 5.3: Rough terrain environment used in training.
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Additional domain randomization includes physics parameter variations and exter-
nal disturbances:

1|# Friction randomization

2| physics_material = EventTerm (

3 func=mdp.randomize_rigid_body_material,

4 mode="startup",

5 params={

6 "static_friction_range": (0.5, 0.99),
7 "dynamic_friction_range": (0.3, 0.99),
8 "num_buckets": 64,

9 1,

0] )

12| # Mass distribution randomization
13| add_base_mass = EventTerm (

14 func=mdp.randomize_rigid_body_mass,

15 mode="startup",

16 params={

17 "mass_distribution_params": (-0.5, 0.5),
18 "operation": "add",

of b,
20/ )

Listing 5.12: Physics domain randomization

5.3.6. Foundation from Existing Velocity Locomotion Task

The development of the language-guided locomotion system built upon the existing
velocity-based locomotion framework already available in Isaac Lab. This foundation
provided a crucial starting point for understanding the system architecture and enabled a
systematic transition from traditional command-based control to natural language guid-
ance.

Isaac Lab Velocity Task Analysis

Isaac Lab includes a comprehensive velocity locomotion example designed for legged
robots, which served as the architectural foundation for this research. The existing veloc-
ity task implements a complete RL training pipeline with the following key characteris-
tics:

@configclass

2| class PolicyCfg (ObsGroup) :

"""Observations for policy group in velocity task."""

5 base_lin_vel = ObsTerm(func=mdp.base_lin_vel, noise=Unoise(n_min=-0.1,

n_max=0.1))

6 base_ang_vel = ObsTerm(func=mdp.base_ang_vel, noise=Unoise(n_min=-0.2,

n_max=0.2))

7 projected_gravity = ObsTerm(func=mdp.projected_gravity , noise=Unoise (n_min
=-0.05, n_max=0.05))

8 velocity_commands = ObsTerm (func=mdp.generated_commands, params={"
command_name": "base_velocity"})

9 joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max
=0.01))

10 joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-1.5, n_max
=1.5))

11 actions = ObsTerm(func=mdp.last_action)

12 height_scan = ObsTerm(func=mdp.height_scan, params={"sensor_cfg":

SceneEntityCfg ("height_scanner")})
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Listing 5.13: Velocity task observation space configuration

The velocity task utilizes a UniformVelocityCommandCfg that generates random target
velocities within specified ranges, which the RL policy learns to track through reward
optimization. This approach demonstrated the feasibility of training locomotion policies
using Isaac Lab’s parallel simulation capabilities.

Architectural Transformation to Language Commands

The transformation from velocity-based to language-guided control required fundamen-
tal changes to the command generation and observation space architecture:

e Command System Replacement: Substitution of UniformVelocityCommandCfg with
our custom LanguageCommandCfg for semantic command generation

* Observation Space Reduction: Elimination of explicit velocity commands in favor
of language embeddings, but removal of multiple unavailable sensors on the actual
JetHexa robot (like the height scanner).

* Sensor Simplification: Streamlined sensor suite focusing on essential propriocep-
tive feedback available on the robot (gravity projection, angular velocity) rather
than comprehensive state estimation

* Reward Function Adaptation: Modification of tracking rewards to compare robot
behavior against language-derived velocity targets rather than directly specified
velocities

This transformation preserved the core RL training infrastructure while enabling se-
mantic command interpretation, demonstrating that language understanding could be
integrated into existing locomotion frameworks without fundamental algorithmic changes.

Proof of Concept: Humanoid G1 Language Locomotion

Prior to the main JetHexa implementation, a proof-of-concept study was conducted using
the Unitree G1 humanoid robot as part of coursework for "Aplicaciones de Reconocimiento
de Formas y Aprendizaje Automatico (ARA)." This preliminary investigation validated
the feasibility of language-guided locomotion on a more complex platform. Some of the
slides of this work can be found in Appendix B.

G1 Platform Characteristics:
¢ Height: 1.20 meters, Mass: 35 kg
* Degrees of Freedom: 37 actuated joints

¢ Observation space: 691 dimensions (including comprehensive joint state and height
scanning)

* Action space: 37-dimensional joint position targets

Experimental Setup: The G1 study employed a progressive curriculum approach
with 922 multilingual commands, utilizing the same sentence transformer later applied
to the JetHexa system. The larger observation space (691D vs. 152D) required more
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Figure 5.4: Parallel training of G1 robot following multiple movement commands

complex network architectures but validated the core language integration principles and
the larger network enabled the use of the sentence embeddings directly (without PCA).

Key Findings:

* Achieved 58% success rate on diverse test commands spanning 10 linguistic cate-
gories

¢ Training was effective using a progressive curriculum approach

The G1 proof-of-concept provided critical validation for the language-guided ap-
proach while informing design decisions for the subsequent JetHexa implementation.

This preliminary work established confidence in the end-to-end approach that be-
came central to the JetHexa system design.

Figure 5.5: G1 robot following the command "proceed in a forward direction" downstairs
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5.4 Phase 3: Reinforcement Learning Training

5.4.1. Proximal Policy Optimization Algorithm

The system employs Proximal Policy Optimization (PPO), a policy gradient algorithm
specifically designed for continuous control tasks like robotic locomotion. PPO addresses
key challenges in policy gradient methods by using a clipped surrogate objective that
prevents destructively large policy updates while maintaining sample efficiency.

PPO Algorithm Overview:

PPO operates through iterative policy improvement cycles:

1. Experience Collection: Run current policy in environment to collect trajectory data

2. Advantage Estimation: Compute advantage estimates using Generalized Advan-
tage Estimation (GAE)

3. Policy Update: Optimize clipped surrogate objective using mini-batch gradient de-
scent

4. Value Function Update: Train critic network to predict value estimates

The clipped objective function prevents policy updates that are too large, maintaining
training stability:

L°HP(9) = E¢[min(r;(0) Ay, clip(r4(0),1 —€,1+¢€) Ay)]

T (a|st)

where r4(0) = (o 18 the probability ratio and A; is the advantage estimate.

old (

5.4.2. Training Infrastructure and Parallelization

The training leverages Isaac Lab’s GPU-accelerated parallel simulation to achieve un-
precedented data collection rates. With 4096 environments running simultaneously on
an RTX 4070 GPU, the system collects over 14,000 control steps per second (because of
the 10Hz control system).

Training Execution:

./isaaclab.sh —p scripts/reinforcement_learning/rsl_rl/train.py \
——task Isaac-Language-Rough-JetHexa-v0 \
——num_envs 4096 \
——headless

Listing 5.14: Training command and configuration
The training process configuration:

* Environments: 4096 parallel instances
¢ Episode Length: 20 seconds (200 steps at 10Hz)

¢ Training Iterations: 10,000 total

Data Collection: 20 steps per iteration per environment

¢ Training Time: Approximately 20 hours
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5.4.3. Neural Network Architecture and Control Loop Implementation

The neural network architecture forms the core of the end-to-end learning system, di-
rectly mapping multimodal observations to joint position targets for the hexapod’s 18
degrees of freedom. Understanding the precise implementation details reveals critical
insights about how language semantics translate into physical motor commands.

Network Architecture and Data Flow

The policy employs a shared actor-critic architecture optimized for continuous control
tasks:

policy = RslRIPpoActorCriticCfg (
init_noise_std=1.0,
actor_hidden_dims=[512, 256, 128],
critic_hidden_dims=[512, 256, 128],
activation="elu"

Listing 5.15: Neural network configuration

Input Processing (152-dimensional observation vector):

The network receives a carefully constructed observation vector containing:

¢ Language embedding (128D): PCA-reduced semantic representation from sentence
transformer

Projected gravity (3D): Robot orientation relative to gravity vector in body frame

Angular velocity (3D): IMU-measured rotational motion in world frame

¢ Previous actions (18D): Last commanded joint positions for temporal consistency

Output Generation (18-dimensional action vector):

The actor network outputs 18 continuous values representing target joint positions in
radians. These values are processed through the action transformation pipeline:

joint_pos = mdp.JointPositionActionCfg (
asset_name="robot",
joint_names=[".x"],
scale=0.25,
use_default_offset=True,
clip={".+": (-2.1, 2.1)}

Listing 5.16: Action processing configuration
The mathematical transformation applied to raw network outputs is:

Orarget = Odefautt + 0.25 - clip (raw_output, —2.1,2.1)

where Og4cfaulr represents the robot’s neutral standing configuration and the 0.25 scal-
ing factor reduces the action magnitude for finer control.
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Temporal Control Loop and Decimation

The system operates with a sophisticated multi-rate control architecture that separates
high-frequency physics simulation from control decision-making:

Simulation Parameters:

¢ Physics timestep: Atg,, = 0.005 seconds (200 Hz)

¢ Decimation factor: 20

¢ Control frequency: foontrol = 2O%IZ =10Hz

¢ Control period: Afniro; = 0.1 seconds

def __post_init__(self):
self.decimation = 20
self .sim.dt = 0.005 # 200 Hz physics
self.sim.render_interval = self.decimation # 10 Hz control

Listing 5.17: Temporal configuration
This means the neural network generates new joint targets every 100 milliseconds,

while the physics simulation maintains servo control at 200 Hz using the implicit actuator
model.

Implicit Actuator Model and Servo Simulation

The system employs implicit actuators that simulate the behavior of the physical HX-35H
servos through a control model:

actuators = {
"leg_coxa": ImplicitActuatorCfg(
joint_names_expr=["coxa_joint_.*"],
effort_limit=3.5, # HX-35H torque limit ( N m )
velocity_limit=6.0, # Maximum angular velocity (rad/s)
stiffness={"coxa_joint_.+": 4.61194}, # Position control gain
damping={"coxa_joint_.+": 0.00184} # Velocity damping

Listing 5.18: Servo simulation configuration
The implicit actuator applies forces according to:
Tapplied = Kp(etarget - ecurrent) - Kdécurrent

where K, = 4.61194 (stiffness) and K; = 0.00184 (damping) create a position con-
troller that approximates servo behavior.

Action History and Temporal Dependencies

The network receives previous actions as part of its observation to enable temporal rea-
soning and smooth control:

def last_joint_pos_target(env, asset_cfg: SceneEntityCfg):
"""Returns the previous raw action commands before processing.
return env.action_manager._terms[ joint_pos’].prev_raw_actions

nwoon

Listing 5.19: Action history implementation
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The use of prev_raw_actions rather than prev_processed_actions provides the net-
work with information about its own previous decisions before scaling and offset trans-
formations, and before the actual stiffness and damping calculations. This enables the
policy to generate stable gait patterns iteration by iteration.

Training Objective and Policy Optimization

The network is trained using Proximal Policy Optimization (PPO) with the following
configuration:

algorithm = RsIRIPpoAlgorithmCfg(
value_loss_coef=1.0,
clip_param=0.2, # Trust region constraint
num_learning_epochs=5,
num_mini_batches=4,
learning_rate=1.0e-3,
gamma=0.99, # Discount factor
lam=0.95 # GAE parameter

Listing 5.20: PPO training configuration

Sim-to-Real Transfer Considerations

The simulation accurately models several aspects critical for real-world deployment:

Servo Response Characteristics: The implicit actuator model approximates the HX-
35H servo’s position control behavior, though the real servos have:

* Response time: 0.18 seconds for 60° movement

* Control resolution: 1000 discrete positions over 240° range

Network Output Interpretation: The network outputs are interpreted as target joint
angles in radians, which must be converted to servo positions (0-1000 range) during real-
world deployment:

(Gtarget - 6min) -1000

Gmax - Qmin

servo_position =

Control Loop Timing: The 10 Hz control frequency matches the practical limitations
of the ROS-based deployment system while being achievable on the Jetson Nano plat-
form. Higher frequencies would require more computational resources without neces-
sarily improving performance given the servo response characteristics.

Network Learning Dynamics

The network learns to associate language embeddings with appropriate motor patterns
through the reward structure. Key learning mechanisms include:

Language-Motor Mapping: The shared encoder learns to extract common features
from the multimodal observation space, enabling transfer between semantically similar
commands.

Temporal Consistency: Including previous actions in the observation space allows
the network to learn smooth control policies that avoid abrupt motion changes.
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Stability Integration: The IMU-based observations (projected gravity, angular ve-
locity) provide essential feedback for balance control, enabling the network to maintain
stability while following language commands.

This architecture successfully bridges the gap between high-level semantic under-
standing and low-level motor control, enabling direct language-guided locomotion with-
out hierarchical planning or symbolic intermediate representations. The careful design
of observation spaces, action transformations, and temporal dynamics ensures both ef-
fective learning and practical real-world deployment.

5.4.4. Reward Function Engineering

The reward function balances multiple objectives essential for language-guided hexapod
locomotion. The system employs 16 reward terms organized into four categories, with
each term contributing to the total reward through weighted linear combination:

16
Riotal = Zwi -1i(st,ar)
i=1

The reward design emphasizes language tracking as the primary objective while en-
suring stability, efficiency, and proper gait patterns. Each category addresses specific
requirements of hexapod locomotion under natural language control.

Language Tracking Objectives

These terms form the core objective, encouraging accurate following of velocity targets
derived from natural language commands.

track_lin_vel_xy_exp = RewTerm(
func=mdp. track_lin_vel_xy_yaw_frame_exp ,
weight=3.0,
params={"command_name": "language_command", "std": 0.5}

)

track_ang_vel_z_exp = RewTerm(
func=mdp. track_ang_vel_z_world_exp,
weight=2.0,
params={"command_name": "language_command", "std": 0.5}

Listing 5.21: Language tracking reward configuration

Both terms use exponential kernels that provide smooth, differentiable rewards:

( error2>
r=exp | —
2
o

The exponential formulation ensures strong rewards for accurate tracking while main-
taining smooth gradients for policy optimization. Linear velocity tracking receives the
highest weight (3.0) as it represents the most common language commands, while angu-
lar velocity tracking has secondary importance (2.0).

Stability and Safety Constraints

These penalties ensure safe operation and prevent dangerous configurations that could
damage the robot or lead to falls.
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# Maintain body orientation parallel to ground
flat_orientation_12 = RewTerm(

func=mdp. flat_orientation_12,

weight=-3.0
)

# Prevent excessive vertical motion
lin_vel_z_12 = RewTerm(func=mdp.lin_vel_z_12, weight=-2.0)

# Limit body roll/pitch rotations
ang_vel_xy_12 = RewTerm(func=mdp.ang_vel_xy_12, weight=-0.05)

# Prevent joint limit violations

dof_pos_limits = RewTerm(
func=mdp.joint_pos_limits ,
weight=-3.0,

17 params={"asset_cfg": SceneEntityCfg("robot", joint_names=".x_joint_.+")}

)

# Strong penalty for episode termination
termination_penalty = RewTerm(func=mdp.is_terminated , weight=-200.0)

Listing 5.22: Stability and safety reward configuration

The stability rewards use quadratic penalties (r = —||x||3) to discourage deviations
from safe configurations. The termination penalty (-200.0) provides the strongest nega-
tive signal to prevent behaviors leading to falls or instability.

Energy Efficiency and Smoothness

These terms encourage energy-efficient locomotion through torque minimization and
smooth control signals.

# Multiple torque penalties at different scales
joint_torques_12 = RewTerm/(
func=mdp.joint_torques_12,

4 weight=-1.0e-5
)

7| dof_torques_12 = RewTerm(func=mdp.joint_torques_l12, weight=-1.5e-7)

9| # Joint acceleration smoothness
0] dof_acc_12 = RewTerm(func=mdp.joint_acc_12 , weight=-1.25e-8)

2| # Action rate smoothness
13| action_rate_12 = RewTerm(func=mdp.action_rate_12, weight=-0.005)

Listing 5.23: Energy efficiency reward configuration

The multiple torque penalties operate at different scales to address various energy
regimes. The small weights ensure these terms provide regularization without over-
whelming the primary tracking objectives.

Hexapod-Specific Gait Quality

These terms shape locomotion patterns appropriate for hexapod morphology and en-
courage proper ground contact dynamics.

1| # Encourage proper stepping behavior

2| feet_air_time = RewTerm(
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1)

func=mdp. feet_air_time,

weight=1.5,
params={
"sensor_cfg": SceneEntityCfg("contact_forces", body_names="tibia_.+"),
"command_name": "language_command",
"threshold": 0.25
}
)

# Penalize foot sliding during contact
feet_slide = RewTerm(
func=mdp. feet_slide,
weight=-0.1,
params={
"sensor_cfg": SceneEntityCfg("contact_forces", body_names="tibia_.+"),
"asset_cfg": SceneEntityCfg("robot", body_names="tibia_.x")

'

)

# Joint-specific deviation penalties
joint_deviation_coxa = RewTerm/(
func=mdp.joint_deviation_I1,
weight=-0.3, # Higher weight for lateral stability
params={"asset_cfg": SceneEntityCfg("robot", joint_names=["coxa_joint_.="])

7

"offset": 0}

joint_deviation_femur = RewTerm(
func=mdp.joint_deviation_I1,
weight=-0.2,
params={"asset_cfg": SceneEntityCfg("robot", joint_names=["femur_joint_ .=

D,

"

"offset": 0.3} # Natural leg configuration offset

)

joint_deviation_tibia = RewTerm(
func=mdp.joint_deviation_I1,

weight=-0.2,
params={"asset_cfg": SceneEntityCfg("robot", joint_names=["tibia_joint_.x"
]) 7
"offset": 0}

Listing 5.24: Hexapod gait quality reward configuration

The feet air time reward encourages proper tripod gait patterns essential for stable
hexapod locomotion. Joint deviation penalties are tailored to each leg segment’s func-
tional role, with coxa joints (hip rotation) receiving higher penalties due to their critical
influence on lateral stability.

Reward Hierarchy and Balance

The reward system establishes a clear objective hierarchy:

Primary Objectives: Language tracking ensures command following remains the
dominant behavior.

Safety Constraints: Stability penalties prevent dangerous configurations while al-
lowing learning.

Quality Improvement: Gait quality terms shape efficient locomotion patterns.
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Regularization: Energy efficiency terms provide subtle guidance without interfering
with primary objectives.

This hierarchical structure enables the policy to prioritize command following while
discovering efficient, stable hexapod gaits. The exponential tracking rewards provide
strong positive signals for accurate language following, while the multi-scale penalty
structure ensures safe, efficient operation across diverse natural language commands.

The reward function successfully balances competing objectives through careful weight
selection and mathematical formulation, enabling effective learning of language-guided
locomotion behaviors while maintaining the physical constraints and safety requirements
essential for real-world hexapod operation.

5.4.5. Training Monitoring and Evaluation

During training, policy development can be monitored using the visualization system:

./isaaclab.sh —p scripts/reinforcement_learning/rsl_rl/play.py \
——task Isaac-Language—Rough—JetHexa-v0 \
——checkpoint logs/rsl_rl/jethexa_rough/2025-08-27_15-17-00/model_10000.pt \
——num_envs 1000

Listing 5.25: Training visualization

Figure 5.6: JetHexa robots following multiple commands in parallel on a rough terrain.

This command loads a checkpoint at iteration 10,000 and visualizes the learned be-
haviors across 1000 parallel environments, allowing observation of policy development
and identification of potential issues.

5.5 Phase 4: Real-World Deployment System Architecture

The transition from simulation to real-world hardware represents one of the most chal-
lenging aspects of this research. Unlike simulation where everything operates in a con-
trolled environment, real-world deployment requires handling hardware limitations, tim-
ing constraints, sensor noise, and the fundamental differences between simulated and
physical servo responses. This phase implements a distributed ROS architecture that de-
composes the monolithic simulation system into three specialized nodes, each handling
a critical aspect of the language-to-motion pipeline.
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5.5.1. System Architecture and Information Flow

The deployment system follows a three-node distributed architecture where information
flows sequentially through specialized processing stages. This design separates concerns
while enabling real-time operation on the resource-constrained Jetson Nano platform.

Human Command

(Text)

/command_text /command_embedding 128D vector /rl/joint_commands | 18joint angles

String message Float32MultiArray | per command JointState Miious

Language Node RL Node Driver Node

Tokenization State Fusion Calibration
Transformer (80ms) Policy Inference (8ms) Servo Commands

PCA Reduction 10Hz Control Loop Safety Checks
/imu/filtered
Built-in sensor JetHexa Hardware
50Hz updates 18 HX-35H Servos

Position Control

Figure 5.7: Information flow through the distributed ROS architecture showing critical timing
and data transformations

The information flow operates through four distinct stages, each with specific timing
requirements and data transformations:

Command Input Stage: Human operators issue text commands through various in-
terfaces (for now, only text commands are enabled). These commands are published to
the /command_text topic as standard ROS String messages, creating a flexible input layer
that can accommodate multiple command sources.

Language Processing Stage: The Language Command Node processes text through
a complete NLP pipeline, converting natural language into 128-dimensional semantic
vectors. This stage operates on-demand, processing each new command within 80ms
average latency.

Control Execution Stage: The RL Inference Node operates as a continuous 10Hz con-
trol loop, fusing language embeddings with IMU sensor data to generate joint position
targets through policy inference. This represents the real-time heart of the system.

Hardware Actuation Stage: The Robot Driver Node converts joint angles to physi-
cal servo positions through systematic calibration, implementing safety mechanisms and
coordinating all 18 servos for smooth hexapod movement.
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5.5.2. Project File Structure and Organization

The deployment system is organized as a ROS package with clear separation between
different functional components:

jethexa_rl_control/

src/ # Python node implementations
language_command_node_pca.py # NLP processing pipeline
rl_inference_lang node.py # Policy execution and control
robot_driver_node.py # Hardware interface
calibrate_servos.py # Calibration utilities
check_hertz.py # Performance monitoring

embeddings/ # Pre-computed training embeddings

language_model_trt/ # TensorRT optimized models

model_lang_actor.engine # Optimized RL policy

commands . csv # Training command dataset

test_set.csv # Evaluation commands

This organization separates core functionality from utilities and data, enabling inde-
pendent development and testing of each component while maintaining clean interfaces
between subsystems.

5.5.3. ROS Communication Infrastructure
The system leverages ROS’s publish-subscribe architecture to create a loosely coupled,

fault-tolerant communication system. This design choice enables independent node de-
velopment, flexible system reconfiguration, and comprehensive monitoring capabilities.

Topic-Based Message Passing

The distributed architecture relies on four primary ROS topics for inter-node communi-
cation:

Table 5.4: ROS Topic Communication Specifications

Topic Name Message Type Frequency Purpose
/command_text std_msgs/String On-demand Text command input
/command_embedding Float32MultiArray On-demand Semantic vectors
/imu/filtered sensor_msgs/Imu 50Hz Robot orientation
/rl/joint_commands sensor_msgs/JointState 10Hz Motor targets

This communication structure provides several critical advantages. The asynchronous
nature allows nodes to process data at their optimal rates without blocking other compo-
nents. The IMU topic operates at 50Hz, providing high-frequency orientation feedback
that the RL node samples at 10Hz for control decisions. The language processing op-
erates on-demand, only when new commands are received, conserving computational
resources.
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Built-in Hardware Integration

A significant advantage of the JetHexa platform is its pre-existing ROS infrastructure.
The IMU sensor was already configured to publish filtered orientation and angular ve-
locity data on /imu/filtered at 50Hz, providing essential feedback for balance control
without requiring additional sensor integration work. This existing infrastructure signif-
icantly simplified the deployment process, as the RL node could immediately subscribe
to reliable sensor data that matched the simulation training format.

5.5.4. Language Command Node: NLP Pipeline Implementation

The Language Command Node transforms natural language into semantic representa-
tions suitable for robotic control. This node encapsulates the complete NLP pipeline
while achieving real-time performance through TensorRT optimization and careful re-
source management.

Processing Pipeline and Performance

The language processing follows a five-stage pipeline optimized for embedded deploy-
ment:

Stage 1 - Tokenization: Input text is converted to numerical tokens using the all-
MiniLM-L6-v2 tokenizer, with padding to 128 tokens and attention mask generation for
variable-length inputs.

Stage 2 - Transformer Inference: The TensorRT-optimized transformer model gen-
erates 384-dimensional embeddings representing the semantic content of the input com-
mand.

Stage 3 - Mean Pooling: Token-level embeddings are aggregated into sentence-level
representations using attention-weighted mean pooling, creating a single semantic vector
for the entire command.

Stage 4 - Normalization: The embedding vector is L2-normalized to ensure consistent
magnitude across different command types and lengths.

Stage 5 - PCA Reduction: The 384-dimensional embedding is reduced to 128 dimen-
sions using a PCA model fitted exclusively on training data, preserving 90.84% of seman-
tic variance while enabling effective RL policy learning.

The complete pipeline achieves 80ms average processing latency, well within the re-
quirements for responsive robot control. The node publishes processed embeddings to
/command_embedding as Float32MultiArray messages containing exactly 128 float values.

5.5.5. RL Inference Node: Real-Time Control Loop
The RL Inference Node represents the cognitive center of the system, operating as a con-

tinuous 10Hz control loop that fuses multimodal sensor data with semantic commands
to generate motor actions through the trained policy network.

Multimodal State Integration

The node maintains three critical data streams that must be synchronized for policy exe-
cution:
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Language Embeddings: 128-dimensional semantic vectors received from the Lan-
guage Command Node, representing the current movement command. These embed-
dings persist until a new command is received, enabling sustained execution of move-
ment behaviors.

IMU Sensor Data: Orientation quaternions and angular velocities received at 200Hz
from the built-in IMU sensor, providing essential feedback for balance control and spatial
awareness.

Action History: The previous 18-dimensional joint command vector, providing tem-
poral context that enables the policy to generate smooth, consistent motor commands.

The node constructs a 152-dimensional observation vector by concatenating projected
gravity (3D), angular velocity (3D), language embedding (128D), and action history (18D).
This exact format match with the simulation training environment is critical for policy
compatibility.

Control Loop Implementation and Timing

The control loop operates at precisely 10Hz to match the training environment frequency.
Each iteration involves several precisely timed operations:

Observation Construction (Ims): Sensor data is processed and combined into the
policy input format, including quaternion-to-gravity projection for orientation represen-
tation.

Policy Inference (8ms): The TensorRT-optimized policy network generates 18-dimensional
action vectors representing target joint positions.

Action Processing (1ms): Raw policy outputs are scaled by 0.25 and clamped to safe
joint limits before publication.

The node publishes joint commands to /rl/joint_commands as JointState messages
containing joint names and target positions. The 10Hz frequency ensures responsive
control while maintaining compatibility with the servo response characteristics.

Graceful Startup Mechanism

A critical safety feature is the graceful startup sequence that slowly moves the robot from
its current position to the default standing pose before beginning RL control. This 3-
second initialization prevents mechanical stress and ensures stable initial conditions for
policy execution.

5.5.6. Robot Driver Node: Hardware Interface and Servo Control

The Robot Driver Node provides the critical interface between high-level joint commands
and low-level servo hardware, implementing comprehensive calibration systems that en-
able successful sim-to-real transfer.

Joint-to-Servo Calibration System

The most complex aspect of real-world deployment is mapping simulation joint angles to

physical servo positions. Each of the 18 joints requires individual calibration parameters
that account for multiple hardware-specific factors:
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Servo Identification: Each joint is mapped to a specific HX-35H servo using hardware
ID numbers (1-18) that correspond to the physical servo bus addresses.

Coordinate System Correction: Simulation and hardware use different coordinate
conventions, requiring systematic sign inversions and angular offsets for proper move-
ment correspondence.

Mechanical Tolerances: Physical assembly introduces variations in joint zero posi-
tions that must be compensated through deviation parameters.

Bilateral Symmetry: Right-side legs require direction inversions compared to left-
side legs due to the hexapod’s bilateral symmetry, implemented through forward/re-
verse multipliers.

The calibration system converts simulation angles (in radians) to servo positions (0-
1000 scale) through a systematic transformation that applies deviation offsets, direction
corrections, range clamping, and linear interpolation to the servo’s operational range.

Servo Communication and Coordination

The driver node interfaces with the physical hardware through the JetHexa SDK, which
provides high-level access to the HX-35H servo communication protocol. The system
uses coordinated multi-servo commands to ensure smooth hexapod movement:

def joint_command_callback (msg) :
servo_commands = []
for joint_name, target_angle in zip(msg.name, msg.position):
if joint_name in JOINT_CALIBRATION:

calib = JOINT_CALIBRATION][joint_name]
servo_pos = angle_to_servo_pos(target_angle, calib)
duration = 50 # ms for 10Hz operation (faster than 100 ms)
servo_commands .append (( calib[ "servo_id "], servo_pos, duration))

serial_servo.set_multi_position (servo_commands)

Listing 5.26: Multi-servo coordination example

This coordination ensures that all 18 servos receive synchronized commands with
consistent timing, preventing mechanical stress and enabling smooth locomotion pat-
terns.

The system applies a duration of 50 ms to move to the next joint position which is
faster than required (100ms given 10Hz). This makes the leg more responsive and gives
it more time to actually move to the desired position.

Safety Systems and Error Handling

The driver node implements multiple safety layers to protect both the hardware and the
operational integrity:

Range Limiting: All joint angles are clamped to URDEF-specified limits before conver-
sion to servo positions, preventing commands that could damage the mechanical system.

Duration Management: The first command uses a 3000ms duration for graceful startup,
while subsequent commands use 50ms for real-time operation.

Emergency Stop Capability: Although the system can be immediately halted through
ROS shutdown mechanisms, usually it was safer to have the hand close to the hardware
shutdown button, stopping all servo motion.
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5.5.7. System Integration and Operational Procedures
System Startup and Initialization

The complete system startup follows a carefully orchestrated sequence to ensure stable
operation:

Step 1: Launch the Robot Driver Node to establish servo communication and safety
systems.

Step 2: Start the RL Inference Node, which waits for IMU data availability and for
embedding command input before proceeding.

Step 3: Initialize the Language Command Node with PCA model fitting and Ten-
sorRT engine loading.

Step 4: Send an initial language command to trigger the graceful startup sequence.

Step 5: Begin normal operation with continuous RL control and on-demand language
processing.

Command Injection and Testing

The distributed architecture enables flexible command input through standard ROS tools:

# Send a movement command from terminal
rostopic pub /command_text std_msgs/String "data: ’walk forward slowly’"

# Monitor system performance and timing
rostopic hz /rl/joint_commands # Should show ~10Hz
rostopic hz /imu/filtered # Should show ~50Hz

# Observe the complete information flow
rostopic echo /command_embedding # 128D semantic vectors
rostopic echo /rl/joint_commands # Joint angle targets

This command-line interface enables comprehensive system testing, performance mon-

itoring, and debugging without requiring complex user interfaces or additional software
development.

5.6 Phase 5: Performance Evaluation and System Validation

The evaluation phase represents the culmination of an extensive development campaign
spanning multiple months and hundreds of training experiments. This phase estab-
lishes rigorous methodologies for assessing system performance, analyzes the conver-
gence characteristics of the final successful model, and validates the effectiveness of the
end-to-end language-guided approach through comprehensive simulation testing and
carefully controlled real-world deployment.

5.6.1. Training Campaign Overview and Model Development History

The path to a successful language-guided locomotion system required extensive experi-
mentation across different configurations, datasets, and training methodologies. The de-
velopment process spanned from April 2025 through August 2025, with over 400 individ-
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ual training runs conducted across two primary environments: flat terrain (jethexa_flat)
and rough terrain (jethexa_rough).

Extensive Training Experimentation

The magnitude of the development effort is reflected in the comprehensive training logs,
which document systematic exploration of the parameter space:

Flat Terrain Training Campaigns (jethexa_flat): 229 individual training runs con-
ducted between April 6 and August 27, 2025. These experiments focused on establishing
fundamental language-locomotion mappings in simplified conditions, enabling rapid it-
eration on core algorithmic components without the complexity of terrain interactions.

Rough Terrain Training Campaigns (jethexa_rough): 166 training runs conducted
across the same timeframe, addressing the more challenging problem of language-guided
locomotion on irregular surfaces while maintaining stability and command following
accuracy.

The training progression reveals several distinct phases of development:

Initial Exploration Phase (April 2025): Intensive daily experimentation with up to
20 training runs per day, exploring fundamental questions about network architecture,
observation space design, and reward function formulation.

Systematic Optimization Phase (June-July 2025): More focused experimentation ad-
dressing specific identified challenges, including dataset imbalance issues, curriculum
design, and convergence stability.

Final Integration Phase (August 2025): Convergence on stable training configura-
tions with emphasis on sim-to-real transfer optimization and real-world deployment
preparation.

Evolution of Training Challenges and Solutions

The extensive training history reveals systematic progression through multiple technical
challenges:

Early Stability Issues: Initial training runs often failed to maintain basic locomotion
stability while attempting to follow language commands. This led to the development of
the progressive curriculum approach and careful reward function balancing.

Language Integration Difficulties: Many early attempts struggled to effectively in-
tegrate language embeddings with locomotion control. The critical discovery that full-
dimensional transformer embeddings (384D) prevented effective RL learning led to the
PCA reduction approach.

Dataset Evolution: The training dataset underwent four major revisions based on
systematic analysis of model performance, progressing from 89 initial commands to the
final 922-command dataset with careful balancing across movement types and languages.

Sim-to-Real Transfer Challenges: Real-world deployment attempts revealed signifi-
cant gaps between simulation behavior and hardware performance, leading to multiple
iterations of domain randomization and calibration refinements.

5.6.2. Final Model Analysis and Training Characteristics

After hundreds of training experiments, the successful model corresponds to training run
jethexa_rough/2025-08-27_15-17-00, which achieved stable convergence and success-
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ful real-world deployment. This model represents the culmination of the iterative devel-
opment process and incorporates all lessons learned from previous training attempts.

Detailed Training Dynamics Analysis

The final model training demonstrated exceptional stability and convergence characteris-
tics across multiple performance metrics. Analysis of the complete 10,000-iteration train-
ing run reveals distinct learning phases and convergence patterns that illuminate the
effectiveness of the end-to-end language-guided approach.

Overall Training Performance and Learning Progression:

To assess training stability, we use a convergence ratio that compares variance in the
final 20% of training to total training variance. Values below 0.1 indicate well-converged,
stable metrics, while values above 0.5 suggest continued instability requiring potential
additional training.

The mean episode reward progression demonstrates the effectiveness of the progres-
sive curriculum and reward function design. Starting from an initial value of 1.88, the
policy achieved rapid improvement in the first 2,000 iterations, reaching stable perfor-
mance above 35 points. The training continued to show gradual improvement, achiev-
ing a peak performance of 44.75 at iteration 4,470 before stabilizing at a final value of
40.40. This 38.51-point total improvement represents successful integration of language
understanding with locomotion control.

Mean Episode Reward
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Figure 5.8: Mean episode reward progression over 10,000 training iterations, showing rapid initial
learning followed by stable convergence around 40 points with peak performance of 44.75 at
iteration 4,470

The learning trajectory exhibits three distinct phases: rapid initial improvement (it-
erations 0-2,000), continued optimization (iterations 2,000-6,000), and stable convergence
(iterations 6,000-10,000). The final convergence ratio of 1.80 indicates some variability in
the final phase, which is probably due to training instability caused by the own model
outputs being used as next iterations input (last_raw_action observation), which can es-
calate quickly to unseen behaviors if not handled carefully.

Language Tracking Performance Analysis:
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The language tracking components represent the core objective of the system and
demonstrate excellent convergence characteristics. Linear velocity tracking achieved a fi-
nal value of 2.11 with an exceptional convergence ratio of 0.0458, indicating highly stable
command following behavior. The metric shows rapid initial improvement from 0.098 to
near-optimal performance within the first 1,000 iterations, followed by fine-tuning that
achieved peak performance of 2.14 at iteration 4,517.
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Figure 5.9: Linear velocity tracking reward progression, demonstrating rapid convergence to
near-optimal performance (2.11 final value) with excellent stability (convergence ratio: 0.0458)

Angular velocity tracking performance paralleled the linear velocity results, achiev-
ing a final value of 1.40 with a convergence ratio of 0.0419. The metric reached its
peak value of 1.46 early in training at iteration 975, then maintained stable high per-
formance throughout the remaining training period. The slight recent downward trend
(-0.00005/step) indicates minor optimization adjustments but does not suggest perfor-
mance degradation.

Angular Tracking Reward

1.4

1.24

1.0 A

0.8

0.6

0.4 4

0.2 A

0.0+ - T T T T
0 2000 4000 6000 8000 10000
Training Steps

Figure 5.10: Angular velocity tracking reward progression, showing rapid early convergence to
peak performance (1.46) at iteration 975, followed by stable maintenance around 1.40
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The excellent performance of both tracking metrics demonstrates successful integra-
tion of language understanding with motor control execution. The rapid convergence
and stability indicate that the PCA-reduced language embeddings provide sufficient se-
mantic signal for precise velocity control.

Policy Learning and Exploration Dynamics:

Policy noise standard deviation maintained stable values throughout training, finish-
ing at 1.05 with a convergence ratio of 0.18. The metric exhibited appropriate exploration-
exploitation balance, with initial values around 0.995 and gradual adaptation to main-
tain exploration while achieving task performance. The stability of this metric indicates
healthy policy learning without premature exploration collapse.

Policy Noise Std

1.05

1.00 4

0.95

0.90 1

0.85

T T T T T T
0 2000 4000 6000 8000 10000
Training Steps

Figure 5.11: Policy noise standard deviation evolution, demonstrating stable exploration mainte-
nance (final value: 1.05) with appropriate adaptation throughout training

Entropy loss progression shows the expected pattern for policy gradient learning, de-
creasing from an initial value of 25.51 to a final value of 23.59. The convergence ratio
of 0.33 indicates stable policy convergence without excessive regularization. The slight
recent upward trend (0.0018/step) suggests continued policy refinement while maintain-
ing appropriate exploration levels.
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Figure 5.12: Policy entropy loss progression from 25.51 to 23.59, showing appropriate policy con-
vergence while maintaining exploration capability

Locomotion Quality and Stability Metrics:

Joint deviation penalties reveal the system’s success in maintaining natural hexapod
posture while following language commands. Coxa joint deviation penalty stabilized at
-0.198, representing acceptable deviation from neutral stance while enabling effective lo-
comotion. The convergence ratio of 0.34 indicates some continued adaptation, reflecting
the challenge of balancing language tracking with postural stability.
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Figure 5.13: Coxa joint deviation penalty progression, stabilizing at -0.198 while maintaining
acceptable postural control during language-guided locomotion

Feet air time rewards demonstrate the development of proper hexapod stepping pat-
terns essential for stable locomotion. The metric improved from -0.026 to -0.088, indicat-
ing successful emergence of gait patterns using all legs. The convergence ratio of 0.084
shows excellent stability in gait development, critical for real-world deployment success.
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Figure 5.14: Feet air time reward progression, improving from -0.026 to -0.088 with excellent
convergence (0.084 ratio), indicating successful tripod gait development

Feet sliding penalty reached a final value of -0.067 with excellent convergence charac-
teristics (ratio: 0.12). The stable performance indicates effective prevention of unrealistic
foot motion that could compromise locomotion quality or sim-to-real transfer.
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Figure 5.15: Feet sliding penalty stabilizing at -0.067 with excellent convergence, demonstrating
effective prevention of unrealistic foot motion

Control Smoothness and Energy Efficiency:

Action smoothness penalty (action_rate_I2) shows the most variable behavior among
all metrics, with a final value of -0.407 and convergence ratio of 2.53. While this indicates
some instability in control smoothness, the metric serves primarily as regularization and
does not impact core task performance. The variability, like in the mean reward case,
likely reflects some action overshooting to very high or very low values after the out-
put of the model is used as input of the next iteration. To mitigate this, we clip the
last_joint_pos_target min and max values so that the training can stabilize again.
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Figure 5.16: Action smoothness penalty showing variability (convergence ratio: 2.53) while main-
taining regularization function for control quality

Training Stability and Convergence Assessment:

The overall training analysis reveals exceptional stability across critical performance
metrics. Eight of the sixteen primary metrics achieved convergence ratios below 0.1, indi-
cating well-stabilized learning without oscillatory behavior. The metrics showing higher
variability (mean reward, action smoothness) reflect some training instability caused by
the control loop architecture.

The rapid convergence of language tracking metrics (both below 0.05 convergence
ratio) demonstrates the effectiveness of the PCA-reduced embedding approach and val-
idates the end-to-end learning strategy. The stable maintenance of locomotion quality
metrics indicates successful integration of command following with natural hexapod gait
patterns essential for real-world deployment.

This comprehensive training analysis confirms that the final model achieved stable,
high-performance language-guided locomotion capabilities suitable for real-world de-
ployment while maintaining the locomotion quality and stability characteristics essential
for practical robotic applications.

5.6.3. Systematic Evaluation Methodology

The evaluation methodology employs a comprehensive multi-stage approach that sepa-
rates detailed simulation-based performance assessment from carefully controlled real-
world validation, enabling thorough analysis while minimizing risks to physical hard-
ware.

Comprehensive Simulation-Based Evaluation

The primary evaluation utilizes a systematic testing protocol implemented through a cus-
tom evaluation script that assesses policy performance across the complete test dataset
in controlled simulation conditions.

Evaluation System Architecture:

The evaluation system implements parallel testing where each of 120 test commands
is executed simultaneously across independent simulation environments. This design
maximizes computational efficiency while ensuring consistent testing conditions:

1| def evaluate_language_guided_policy (policy, test_commands):
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"""Systematic evaluation across all test commands."""
# Assign unique command to each parallel environment
for env_id, command in enumerate (test_commands):
command_manager . set_command_by_index (command.id ,
env_ids=[env_id])

# Execute for fixed duration to assess steady-state performance
for step in range(EVAL_STEPS): # 48 steps = 4.8 seconds
actions = policy(observations)
observations, _, _, _ = env.step(actions)
record_velocity_tracking_data (step)

# Calculate comprehensive performance metrics
return compute_tracking_errors_by_category ()

Listing 5.27: Core evaluation methodology

Evaluation Protocol Parameters:

The evaluation employs carefully selected parameters designed to assess steady-state
performance while providing sufficient data for statistical analysis:

¢ Simulation Duration: 48 control steps (4.8 seconds at 10Hz) - sufficient for reaching
steady-state velocity while avoiding environmental drift

¢ Environment Configuration: Flat terrain environment to ensure consistent evalua-
tion conditions across all commands

¢ Performance Metrics: Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) between achieved and target velocities

* Parallel Execution: All 120 test commands evaluated simultaneously for computa-
tional efficiency and timing consistency

5.6.4. Real-World Deployment Validation Strategy

Real-world validation represents the ultimate test of sim-to-real transfer effectiveness,
but deployment of language-guided locomotion systems introduces significant safety
challenges requiring a conservative validation approach.

Safety Considerations and Testing Protocol

Physical testing of end-to-end language-guided systems presents unique risks compared
to traditional robotic validation. Locomotion involves continuous motion with poten-
tial for falls or mechanical damage from unexpected policy behaviors, while the learned
nature of language-motor mapping means responses to novel commands cannot be pre-
dicted a priori. The JetHexa platform represents significant investment (1,050€) with
complex mechanical systems vulnerable to damage from inappropriate commands or
environmental interactions.

Given these considerations, real-world validation employs a deliberately conserva-
tive protocol:

Command Selection Criteria:

¢ Selection limited to commands with simulation RMSE error <0.15

* Emphasis on slow/moderate speeds and simple single-axis movements
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¢ Focus on high-performing commands from simulation evaluation
Safety Controls:

¢ Testing on smooth, level surfaces with 1-meter clearance
* Emergency manual override and power disconnection capabilities
¢ Individual command execution limited to 5-15 seconds

* Sequential testing with system reset between commands

Performance Assessment Framework

Real-world assessment focuses on qualitative validation rather than precise quantitative
measurement:

Core Validation Criteria:

¢ System Integration: All ROS nodes operate reliably without communication fail-
ures

¢ Language Processing: Successful text-to-embedding conversion without errors

¢ Movement Correspondence: Appropriate directional responses matching command
semantics

* Locomotion Stability: Stable hexapod gaits without falls or instability

* Operational Reliability: Sustained operation without crashes or unexpected be-
haviors

This conservative methodology validates fundamental system capabilities—language
processing, directional response accuracy, locomotion stability, and safety system effec-
tiveness—while minimizing hardware risks and ensuring operator safety.

5.6.5. Integrated Evaluation Pipeline

The evaluation framework follows a systematic three-stage pipeline:

Stage 1: Simulation Assessment Complete 120-command test set evaluation in Isaac
Lab, generating performance metrics across linguistic categories and identifying highest-
performing commands.

Stage 2: Candidate Selection Filter commands based on simulation performance
thresholds (RMSE <0.15) and safety criteria, selecting representative samples across move-
ment types.

Stage 3: Hardware Validation Execute selected commands on physical hardware
with full safety protocols, validating sim-to-real transfer through behavioral observation
and system reliability assessment.

This integrated approach provides comprehensive evaluation while acknowledging
practical constraints of physical robotics systems, establishing rigorous performance stan-
dards while enabling safe progression from simulation to real-world deployment.



CHAPTER 6
Results

This chapter presents a comprehensive evaluation of the end-to-end language-guided
reinforcement learning system, covering both simulation training performance and real-
world deployment validation. The results demonstrate the feasibility of direct language-
to-motor control while revealing important insights about the performance boundaries
and limitations of the approach.

6.1 Final Model Training Performance

The final successful model (training run jethexa_rough/2025-08-27_15-17-00) was trained

for 10,000 iterations without curriculum learning, using the complete dataset of 922 mul-
tilingual commands from the beginning. This approach proved more effective than pre-
vious curriculum-based attempts, enabling the policy to learn from the full command
diversity immediately rather than being constrained by progressive complexity intro-
duction.

The training utilized 4096 parallel environments in Isaac Lab simulation, achieving
over 280,000 simulation steps per second on RTX 4070 hardware. The complete training
process required approximately 20 hours.

Table 6.1: Final Model Training Performance Summary

Metric Final Value Training Characteristics
Total Training Iterations 10,000 20 hours training duration
Mean Episode Reward 40.40 38.51 point improvement
Peak Performance 44.75 Achieved at iteration 4,470
Linear Velocity Tracking 2.11 Excellent convergence (0.046 ratio)
Angular Velocity Tracking 1.40 Strong performance (0.042 ratio)
Policy Noise Std 1.05 Stable exploration maintenance
Convergence Quality Excellent 8/16 metrics well-converged

6.2 Language Understanding Baseline Evaluation

To establish theoretical performance limits for language understanding accuracy, we trained
a Multi-Layer Perceptron (MLP) to predict velocity targets directly from the same PCA-
reduced language embeddings used in the full RL system. This baseline represents the
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best-case scenario for pure language understanding, assuming perfect motor control ex-
ecution.

6.2.1. Baseline Architecture and Results

The MLP baseline utilized a three-layer architecture (128—256—128—64—3) with ReLU
activation, trained for 100 epochs using Mean Squared Error loss. The model was trained
on 922 commands and tested on 120 held-out commands.

Table 6.2: MLP Baseline Performance - Language Understanding Limits

Maetric Mean Absolute Error
Overall MSE 0.0925
Overall MAE 0.1791
X-Velocity MAE (m/s) 0.3099
Y-Velocity MAE (m/s) 0.0672
Z-Angular MAE (rad/s) 0.1603

6.3 Reinforcement Learning Agent Performance

6.3.1. Evaluation Methodology

The trained RL policy was evaluated using a comprehensive test set of 120 commands
spanning diverse categories: close variations, typos, abbreviations, novel concepts, mul-
tilingual commands, slang, formal language, uncertain expressions, emphasis patterns,
and novel verbs. Each command was executed for 48 simulation steps (4.8 seconds) to
assess steady-state performance using Mean Absolute Error (MAE) as the primary met-
ric.

X Velocity (m/s) Y Velocity (m/s) Z Angular (rad/s)

Figure 6.1: Predictions using MLP Baseline on test set

The evaluation employed MAE to provide directly interpretable error measurements
in the same units as the target velocities (m/s for linear velocities, rad/s for angular
velocity), enabling intuitive understanding of tracking accuracy.

6.3.2. Overall Performance Metrics

The RL agent achieved the following performance compared to baselines:

The RL agent significantly outperforms random guessing while showing substantial
gaps compared to the theoretical language understanding ceiling established by the MLP
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Table 6.3: RL Agent Performance Comparison with Baselines (MAE)

Metric MLP (MAE) RL Agent (MAE) Random Guess (MAE)
X-Vel. Err. (m/s) 0.3099 0.5828 1.2089
Y-Vel. Err. (m/s) 0.0672 0.1390 1.0314
Z-Ang. Err. (rad/s) 0.1603 0.2705 1.0145
Overall MAE 0.1791 0.3308 1.0849

baseline. The overall MAE of 0.3308 represents a practical level of tracking accuracy for
language-guided locomotion, though with clear room for improvement.

6.3.3. Performance Gap Analysis

The performance gaps between the MLP baseline and RL agent reveal the additional
complexity introduced by the reinforcement learning control task:

¢ X-Velocity Gap: 0.27 m/s - The largest gap, indicating that forward/backward
control presents the greatest challenge for the RL policy

* Y-Velocity Gap: 0.07 m/s - The smallest gap, suggesting lateral control is more
achievable with smaller semantic ambiguity

* Z-Angular Gap: 0.11 rad/s - Moderate gap indicating reasonable rotational control
performance

These gaps quantify the additional error introduced by the motor control learning
task beyond pure language understanding limitations. The X-velocity gap represents
an 88% increase over the baseline, while Y-velocity shows only a 107% increase, and Z-
angular demonstrates a 69% increase.

However this analysis is not sufficient, given that this gaps could be justified by cate-
gory imbalances on the test set. To really assess the quality of the model we need to make
a performance analysis by category.

6.3.4. Command Category Performance Analysis

Analysis of performance across different command categories and movement types re-
veals distinct patterns in both linguistic understanding and motor control execution. The
comprehensive evaluation examined 120 test commands distributed across 10 linguis-
tic categories and 6 movement types, enabling systematic assessment of language-motor
mapping capabilities.

Performance by Linguistic Category

The linguistic category analysis reveals that novel verbs achieved the best performance
(0.287 MAE), contradicting initial expectations about semantic transfer limitations. Com-
mands like "tiptoe forward" (0.106) and "shimmy left" (0.168) demonstrated successful
velocity mapping from novel locomotion descriptors. However, this category also con-
tained significant outliers including "gallop ahead" (0.599) and "hustle forward" (0.559),
indicating variable success in biological metaphor interpretation.
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Table 6.4: Performance by Command Category (MAE)

Category Command Count Avg Error
Novel Verbs 15 0.287
Typos 9 0.306
Abbreviations 7 0.311
Close Variations 25 0.320
Slang/Colloquial 10 0.335
Uncertain/Hedged 8 0.338
Formal/Technical 10 0.349
Multilingual 10 0.350
Novel Concepts 19 0.361
Emphasis/Caps 7 0.362

Emphasis and caps commands showed the highest variability, ranging from "STOP
STOP STOP" (0.143) to "GO GO GO GO GQO" (0.707), the worst-performing command
in the entire test set. This suggests the system handles moderate emphasis effectively
but fails catastrophically with extreme intensity markers that likely exceed the semantic
bounds of the training distribution.

Performance by Movement Type

Table 6.5: Performance by Movement Type and Relevant Velocity Component

Movement Type Count Avg MAE Component Comp. MAE
Stop 14 0.103 All components (zero) 0.103
Lateral 9 0.218 Y-velocity 0.467
Complex Combined 2 0.272 Multiple components 0.272
Forward /Backward 70 0.363 X-velocity 0.881
Rotation 19 0.399 Z-angular velocity 0.999
Combined Forward+Turn 6 0.460 X-velocity + Z-angular 0.460

The movement type analysis reveals a clear performance hierarchy that correlates
with control complexity. Stop commands achieved exceptional performance (0.103 MAE)
across all linguistic categories, reflecting both the simplicity of zero-velocity targets and
the prevalence of stop commands in training data.

Forward /backward commands, representing 58% of the test set, showed moderate
overall performance (0.363 MAE) but revealed significant asymmetry in velocity com-
ponent tracking. The X-velocity component error (0.881 MAE) substantially exceeds the
theoretical language understanding ceiling (0.310 MAE from MLP baseline), indicating
that longitudinal control presents the greatest motor learning challenge.

Rotation commands demonstrated the poorest component-specific performance, with
Z-angular velocity errors (0.999 MAE) approaching the magnitude of target velocities
themselves. This suggests fundamental difficulties in angular velocity control that extend
beyond language understanding limitations.

Additional tuning would be necessary to make rotational movements effective, prob-
ably the complexity in the gait pattern needed to make the hexapod rotate along with
the relatively slow 10Hz of the control loop is the main responsible. Also the training set
imbalance (most data points have a value of 0), which makes the policy comfortable not
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rotating at all. Quick tests show the model is able to prioritize rotation and rotate when
given a very high reward for angular tracking and a control loop of 50Hz. Further reward
engineering and testing will be needed to make the model rotate at 10Hz and a balanced
reward system that enables effective gait patterns.

Hardware and Control Constraints

The velocity tracking errors observed in the results could also be explained by hardware
limitations. While the system successfully interprets directional commands from natural
language, it struggles to achieve the precise target velocities due to fundamental physical
constraints of the JetHexa platform.

Primary Hardware Limitations:

The JetHexa hexapod faces several constraints that prevent accurate velocity tracking:

¢ Servo Response Time: The HX-35H servos require 0.18 seconds to complete a 60°
movement, creating significant delays that accumulate across the 18 joints required
for coordinated locomotion

¢ Control Frequency: The 10Hz control loop updates commands every 100ms, which
is insufficient for precise velocity control when combined with servo response de-
lays

* Hexapod Gait Constraints: Stable tripod gaits require minimum cycle times that
physically limit maximum achievable speeds regardless of commanded targets

Velocity Magnitude vs. Direction Performance:

Analysis of the results reveals a clear pattern: the robot can correctly interpret move-
ment direction from language commands but cannot match the specified velocity mag-
nitudes. For example, some commands requesting 1.0 m/s forward motion are correctly
interpreted as "move forward" but the robot may only achieve 0.3-0.5 m/s due to hard-
ware constraints.

This explains why commands like "tiptoe forward" (0.106 MAE) perform well—they
specify both appropriate direction and realistic speeds—while "achieve maximum propul-
sion" (0.694 MAE) fails because it requests velocities exceeding the platform’s physical
capabilities.

Velocity-Dependent Performance Analysis

Performance evaluation reveals a systematic bias where commands requesting slower
target velocities naturally achieve lower MAE values, as small absolute errors on low-
magnitude targets result in proportionally better performance metrics. However, anal-
ysis of component-specific tracking accuracy reveals examples of successful high-speed
command execution alongside clear failure cases.

Good Performance on Fast Commands:

Several commands demonstrate effective tracking of higher target velocities when
analyzing the relevant velocity component:

¢ "lateral displacement leftward" (target: 0.5 m /s lateral) - Achieved Y-velocity MAE
of 0.300, indicating actual lateral speed of approximately 0.2 m/s, representing 40%
of target velocity
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* "explore ahead" (target: 0.7 m/s forward) - X-velocity MAE of 0.547, suggesting
forward movement at 0.15 m/s, still in correct direction

* "bruv back it up" (target: -1.0 m/s backward) - X-velocity MAE of 0.86, suggesting
backward movement at 0.14 m/s, still in correct direction

Poor Performance on Fast Commands:

Conversely, some high-speed commands show systematic failure in the relevant ve-
locity component:

* "GO GO GO GO GO" (target: 2.0 m/s forward) - X-velocity MAE of 2.004, indi-
cating the robot achieved near-zero forward velocity despite maximum emphasis

¢ "achieve maximum propulsion" (target: 2.0 m/s forward) - X-velocity MAE of
1.965, showing minimal forward motion for extreme speed request

* "hustle forward" (target: 1.5 m/s forward) - X-velocity MAE of 1.488, indicating
very slow forward movement despite urgency semantics
6.3.5. Training vs. Test Performance

The model performed better on the test set than on the training data, which is unusual in
machine learning where test performance typically degrades due to overfitting.

Table 6.6: Training vs. Test Set Performance Comparison (MAE)

Metric Training Set Test Set
Overall MAE 0.392 0.331
X-Velocity MAE (m/s) 0.768 0.583
Y-Velocity MAE (m/s) 0.161 0.139
Z-Angular MAE (rad/s) 0.246 0.271

Why Test Performance Improved:

The improved test performance likely reflects differences in the datasets rather than
exceptional model capabilities:

* Training data diversity: The 922 training commands include more extreme and un-
realistic velocity targets that make learning harder but create a more robust model

¢ Test set design: The 120 test commands were systematically designed across bal-
anced categories, potentially creating more reasonable velocity targets than the or-
ganically generated training data

Component Performance:

The overall pattern suggests the model learned robust language-motor relationships
during training rather than memorizing specific commands, enabling good performance
on novel test commands.
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6.3.6. Direction Performance

Given the robot’s inability to match target velocities and the tight coupling between MAE
values and test set velocity distributions, traditional error metrics provide limited insight
into the quality of language understanding. However, by focusing on directional cor-
rectness rather than velocity magnitude, we can assess whether the system successfully
interprets movement semantics from natural language commands.

To evaluate directional performance, we classify a command as successful if the MAE
in the primary movement component is lower than the absolute value of the requested
velocity. This criterion indicates that the robot achieved some movement in the intended
direction, regardless of speed accuracy. For example, a command requesting 0.5 m/s
leftward movement with a Y-velocity MAE of 0.3 indicates successful leftward motion at
approximately 0.2 m/s.

Table 6.7: Direction Accuracy by Movement Type

Direction Total Correct Accuracy (%) Avg Target

Stop 14 14 100 0.00
Backward 13 9 69 0.98
Left 5 3 60 0.46
Forward 62 34 55 0.83
Right 4 2 50 0.50
Turn Right 9 3 33 1.00
Turn Left 13 1 8 1.00
Overall 120 66 55.0 0.86

Overall Directional Understanding:

The system achieved 55.0% overall direction accuracy, indicating that despite velocity
tracking limitations, the robot correctly interpreted and executed the intended movement
direction in more than half of the commands. This suggests that the language-motor
mapping successfully captures fundamental directional semantics, with failures primar-
ily attributable to hardware constraints rather than language understanding deficiencies.

Performance Hierarchy by Movement Type:

Stop commands demonstrated perfect directional accuracy (100%), reinforcing their
exceptional performance across all evaluation metrics. This reflects both the semantic
clarity of stop concepts and the physical simplicity of achieving zero-velocity targets.

Linear movements showed moderate success rates, with backward commands (69%)
outperforming forward commands (55%). This asymmetry suggests that backward move-
ment interpretation may benefit from clearer semantic markers or face fewer hardware-
related execution challenges.

Rotational movements revealed the most significant performance degradation, with
turn left commands achieving only 8% directional accuracy compared to 33% for turn
right commands.

Target Velocity Impact:

Analysis by velocity magnitude reveals a counterintuitive pattern where higher-speed
commands (>1.0 m/s) achieved 75.0% directional accuracy compared to 63.0% for low-
speed commands (0.5 m/s). This suggests that semantic clarity may actually improve
with more explicit speed requests, as commands like "hustle forward" provide clearer
directional signals than ambiguous slow-motion descriptors.
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Systematic Failure Patterns:

Rotational commands showed the most consistent failures, with commands like "face
me," "rotate leftwards," and "trun 1ft" all failing to achieve directional correctness despite
relatively clear semantic content. This pattern suggests that angular velocity control rep-
resents the fundamental limitation of the current approach rather than language under-
standing deficiencies.

The directional analysis demonstrates that while velocity magnitude tracking remains
challenging due to hardware constraints, the end-to-end language-guided system suc-
cessfully captures and executes basic movement semantics in the majority of cases, vali-
dating the core approach while highlighting specific areas for future improvement.

6.3.7. Direction Accuracy Baseline Comparison
To establish the significance of the RL agent’s 55.0% directional accuracy, we compare this
performance against both theoretical language understanding limits and random chance

performance.

Table 6.8: Direction Accuracy Comparison Across Methods

Method Direction Accuracy (%)
MLP Baseline 84.2
RL Agent 55.0
Random Guess 35.8

The MLP baseline achieves 84.2% directional accuracy, establishing the theoretical
ceiling for language understanding using the current embedding approach. The RL
agent’s 55.0% accuracy represents a 29.2 percentage point degradation, quantifying the
directional errors introduced by difficult continuous motor control integration.

The random baseline’s 35.8% accuracy confirms that the RL agent substantially out-
performs chance by 19.2 percentage points, validating that the system captures meaning-
ful directional semantics from natural language despite the motor control challenges.

The 29.2 percentage point gap between MLP and RL performance indicates that mo-
tor control integration introduces significant directional confusion beyond pure language
understanding limitations. This suggests that the reinforcement learning process dis-
rupts clear directional mappings learned from language embeddings, likely due to the
policy’s simultaneous optimization across multiple competing objectives including ve-
locity magnitude tracking and hardware constraint satisfaction.

6.4 Real-World Deployment Validation

6.4.1. System Integration Performance

Real-world deployment validation followed the conservative protocol outlined in Phase
5, focusing on qualitative validation of core system capabilities rather than quantitative
performance measurement. The deployed system achieved the following operational
characteristics on the Jetson Nano platform:
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Table 6.9: Real-World System Performance Metrics

Metric Target Achieved
Language Processing Latency ~ <100ms 80ms
Policy Inference Time <50ms 8ms
Control Loop Frequency 10Hz 10Hz
System Stability No crashes Stable operation

Figure 6.2: Sequence of real JetHexa robot performing the test set instruction "glide to the left"

6.4.2. Validation Criteria Assessment

The real-world validation successfully demonstrated good performance on most core val-
idation criteria:

System Integration: All ROS nodes (Language Command Node, RL Inference Node,
Robot Driver Node) operated reliably without communication failures during testing ses-
sions.

Language Processing: Successful text-to-embedding conversion for all tested com-
mands without processing errors. The TensorRT-optimized transformer inference consis-
tently achieved 80ms latency.

Movement Correspondence: Commands selected for real-world testing demonstrated
similar gaits as displayed by the same command on simulation, achieving appropriate
directional responses matching command semantics.

Locomotion Stability: The graceful startup sequence (3-second transition from cur-
rent pose to standing position) operated consistently. However, the hexapod was not



78 Results

always able to maintain stable gaits and would sometimes stumble and fall on flat ter-
rain, which would never happen on simulation.

Operational Reliability: The system sustained operation for the intended testing du-
ration without software crashes, memory leaks, or unexpected behaviors.



CHAPTER 7

Conclusions

This final chapter synthesizes the contributions, challenges, and outcomes of this thesis.
It evaluates the project against its initial objectives, reflects on the development process
and the knowledge acquired, connects the work to the broader context of the master’s
degree program, and outlines promising directions for future research.

7.1 Fulfillment of Objectives

The primary goal of this thesis was to develop and validate an end-to-end neural net-
work that directly maps natural language instructions to motor actions for a legged robot.
This overarching goal was systematically addressed through a series of primary and sec-
ondary objectives, all of which have been successfully met.

7.1.1. Primary Objectives

1. Develop Direct Language-Motor Grounding: This objective was fully achieved.
The proposed end-to-end architecture successfully integrates language understand-
ing directly into the reinforcement learning observation space. By converting nat-
ural language commands into semantic embeddings and concatenating them with
proprioceptive sensor data, the system learned to generate motor commands with-
out any intermediate symbolic representations. The successful training conver-
gence and real-world deployment validate that direct semantic grounding in con-
tinuous motor control is not only feasible but effective.

2. Achieve Multilingual Capability: The system demonstrated robust multilingual
capabilities, successfully interpreting commands in English, Spanish, German, and
French. This was accomplished by leveraging a universal sentence transformer
model (al1-MiniLM-L6-v2) that produces semantically consistent embeddings across
different languages. The model’s ability to generalize to novel multilingual com-
mands in the test set confirms that the learned locomotion behaviors are tied to
semantic meaning rather than specific linguistic syntax.

3. Implement End-to-End Learning: This core objective was met by training a single
actor-critic neural network policy. The network takes raw sensor data and lan-
guage embeddings as input and outputs joint position targets directly. This unified
approach avoids the information loss and error propagation inherent in traditional
hierarchical systems, enabling the discovery of more holistic and adaptive behav-
iors.
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4. Validate Real-World Deployment: The feasibility of the approach was confirmed

through successful deployment on the physical JetHexa hexapod. The policy, trained
exclusively in simulation, was transferred to the hardware using a distributed ROS
architecture on the embedded NVIDIA Jetson Nano. The robot successfully exe-
cuted language-commanded movements, validating the effectiveness of the sim-
to-real transfer techniques, which included extensive domain randomization and a
meticulous hardware calibration process.

7.1.2. Secondary Objectives

1. Demonstrate Emergent Semantic Understanding: The system exhibited strong

generalization to novel commands not seen during training. As shown in the re-
sults, it successfully interpreted new verbs, colloquial slang, and variations in com-
mand structure, achieving a 55% directional accuracy on the test set. This demon-
strates that the model learned a genuine mapping from semantic intent to physical
action rather than simply memorizing training examples.

. Achieve Computational Efficiency: This was a critical success. By pre-computing

embeddings during training, using PCA for dimensionality reduction (384D to
128D), and optimizing the final models with TensorRT, the system achieved real-
time performance on the resource-constrained Jetson Nano. The language process-
ing pipeline executed in 80ms and the policy inference in just 8ms, enabling the
10Hz control loop to run reliably.

. Establish Evaluation Metrics: A comprehensive evaluation framework was devel-

oped, combining quantitative simulation-based metrics (MAE, RMSE) with quali-
tative real-world validation. The introduction of "Direction Accuracy" as a metric
proved particularly insightful, allowing for an assessment of language understand-
ing that was decoupled from the physical limitations of the hardware’s velocity
tracking.

. Enable Scalable Extension: The architecture is inherently scalable. New com-

mands or behaviors (e.g., "jump,” "wave") could be added by expanding the dataset
and modifying the reward function, without requiring fundamental changes to the
network architecture itself. This modularity in the reward and data pipeline pro-
vides a clear path for future expansion.

7.2 Reflection on the Work Realized

The development process was a significant learning experience, marked by technical
challenges that required systematic problem-solving and iterative refinement.

7.2.1.

Problems Encountered and Solutions

The most significant challenge was bridging the gap between high-dimensional semantic
space and the continuous control space of robotics.

* Problem: Initial training attempts failed because the reinforcement learning agent

could not effectively learn from the high-dimensional (384D) language embeddings.
The observation space was too large and noisy for the policy to discern meaningful
patterns.
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¢ Solution: Principal Component Analysis (PCA) was implemented to reduce the
embedding dimensionality. After systematic analysis, a reduction to 128 compo-
nents was found to preserve over 90% of the semantic variance while making the
learning problem tractable for the RL agent. This was a pivotal breakthrough for
the project.

* Problem: The sim-to-real transfer was initially unsuccessful; the robot’s move-
ments on the hardware were erratic and unstable despite good performance in sim-
ulation.

e Solution: This was addressed on two fronts. First, domain randomization in the
Isaac Lab simulation was significantly expanded to include variations in friction,
mass, and terrain. Second, a meticulous, joint-by-joint calibration system was de-
veloped in the ROS driver node to account for mechanical offsets and coordinate
system differences between the simulated model and the physical hardware.

7.2.2. Errors Committed and Lessons Learned

A key error was the initial assumption that a progressive learning curriculum, where the
model is gradually exposed to more complex commands, would be the optimal training
strategy. In practice, this approach seemed to create a bias towards simpler commands.
The most successful model was trained on the full, diverse 922-command dataset from
the outset. The lesson learned is that for generalization in language-guided tasks, expos-
ing the model to the widest possible distribution of data from the beginning can lead to
a more robust and versatile policy.

7.2.3. Personal and Professional Learning

This project has been profoundly formative.

* Professionally, I have acquired advanced, practical skills in cutting-edge technolo-
gies at the intersection of Al and robotics. This includes mastery of the Isaac Lab
simulation environment, deep reinforcement learning with RSL-RL, application of
NLP sentence transformers, and the optimization (TensorRT) and deployment of
neural networks on embedded systems (Jetson Nano) using ROS.

¢ Personally, the project instilled a deep appreciation for resilience and systematic
debugging. Facing hundreds of failed training runs taught me the importance of
methodical experimentation, meticulous logging, and perseverance. It honed my
ability to deconstruct complex, multifaceted problems and address them one com-
ponent at a time.

7.3 Relation of the Work to Master’s Studies

This thesis serves as a capstone project that directly integrates and applies knowledge
from numerous courses within the Mdster Universitario en Inteligencia Artificial, Reconocimiento
de Formas e Imagen Digital. It is a clear demonstration of the ability to synthesize concepts
from different disciplines to solve a complex, real-world problem.

The core of the project is a direct application of principles from Reconocimiento de
Formas y Aprendizaje Automatico (Pattern Recognition and Machine Learning) and
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Aprendizaje Automatico Avanzado (Advanced Machine Learning). The use of Prox-
imal Policy Optimization (PPO), an advanced policy gradient method, and the design

of the actor-critic architecture are central to these subjects. Furthermore, the proof-of-
concept on the G1 humanoid was developed for the course Aplicaciones de Reconocimiento
de Formas y Aprendizaje Automatico (Applications of PR and ML).

The policy itself is a deep neural network, making the knowledge from Redes Neu-
ronales Artificiales (Artificial Neural Networks) fundamental to its design, implemen-
tation, and training.

The language understanding component draws heavily from Lingiiistica Computa-
cional (Computational Linguistics), Tecnologias del lenguaje humano (Human Lan-
guage Technologies), and Aplicaciones de la Lingiiistica Computacional (Applications
of Computational Linguistics). The selection and use of the sentence transformer model
to create semantic vector representations from raw text is a key technique from this do-
main.

Finally, while not a primary focus, the project is deeply connected to the fields of
Graéficos por Computador (Computer Graphics) and Realidad Virtual y Aumentada
(Virtual and Augmented Reality). The entire training process relied on Isaac Lab, a
high-fidelity, physically-based simulator that is a direct product of advanced computer
graphics and physics simulation technology.

This work clearly demonstrates the ability to combine state-of-the-art techniques from
machine learning, natural language processing, and robotics simulation to create a func-
tional, intelligent system, thereby fulfilling the master’s objective of applying learned
theory to practical, vanguard challenges.

7.4 Future Work

While this thesis successfully demonstrated the feasibility of end-to-end language-guided
locomotion, it also opens up several exciting avenues for future research.

7.4.1. Improvements and Short-Term Extensions

* Enhance Rotational Control: The poorest performance was observed in rotational
movements. Future work should focus on re-engineering the reward function to
provide a stronger incentive for angular velocity tracking. Experimenting with a
higher control frequency (e.g., 20-30Hz) could also provide the finer control needed
for smooth turns.

* Improve Sim-to-Real Transfer: The current sim-to-real transfer could be improved
by creating a more accurate model of the HX-35H servo’s dynamics. This would in-
volve physically characterizing the servo’s response time, torque curves, and back-
lash, and incorporating this data into the simulation’s actuator model.

7.4.2. New Research Directions

* Vision-Language-Action (VLA) Integration: The most impactful next step would
be to incorporate visual input into the observation space. By adding data from
the robot’s depth camera, the system could learn to ground language commands
in the physical environment, enabling instructions like "walk to the blue chair" or
"navigate around the obstacle."
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¢ Long-Horizon Task Execution: The current system handles single, continuous com-
mands. Integrating a memory mechanism, into the policy network would allow the
robot to execute sequential, long-horizon tasks (e.g., "walk forward for five seconds,
then turn left").

¢ Hierarchical Reinforcement Learning (HRL): For even more complex tasks, an
HRL approach could be explored where a high-level, language-conditioned policy
sets sub-goals for a low-level motor control policy. This could combine the benefits
of semantic understanding with robust, reactive motor skills.

7.4.3. Paths to Avoid

Based on the success of the end-to-end approach, it is recommended to avoid re-introducing
hard-coded, symbolic intermediate representations between language and action. While
such systems are more interpretable, they create semantic bottlenecks and limit the sys-
tem’s flexibility and ability to discover novel behaviors. The future of this research line
lies in further embracing direct, data-driven mappings from multimodal sensory inputs
to action.
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APPENDIX A
JetHexa Platform Specifications

The Hiwonder JetHexa is a commercially available hexapod robot platform designed for
research and educational applications in robotics, artificial intelligence, and autonomous
navigation. This appendix provides comprehensive technical specifications and capabil-
ities documentation for the platform used in this research.

A.1 Platform Overview

Figure A.1: JetHexa hexapod robot

The JetHexa represents a modern approach to legged robotics education and research,
combining high-performance embedded computing with sophisticated mechanical de-
sign. The platform integrates NVIDIA Jetson Nano processing power with precision
servo actuators to create a capable hexapod system suitable for advanced locomotion
research.
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A.2 Hardware Specifications

A.2.1. Physical Characteristics

Table A.1: JetHexa Physical Specifications

Parameter Specification

Total Weight 2.5kg

Frame Material Anodized aluminum alloy
Package Dimensions 39 x 36 x 21 cm

Operating Temperature -10°C to +60°C

Leg Configuration 6 legs, 3 DOF per leg

Total DOF 18 actuated joints

Payload Capacity Approximately 500g
Ground Clearance Adjustable, 50-150mm

The mechanical structure employs precision-machined aluminum components with an-
odized surface treatment for durability and corrosion resistance. The hexapod configu-
ration enables stable tripod gaits while maintaining redundancy for fault tolerance.

A.2.2. Actuator System

HVBUS sty

Hiwenge,

>

Figure A.2: HX-35H intelligent serial bus servo used in JetHexa joints

The JetHexa employs 18 HX-35H intelligent serial bus servos distributed across its six
legs. Each servo provides high-precision position control with integrated feedback sys-
tems.
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Table A.2: HX-35H Servo Specifications

Parameter

Specification

Stall Torque

25 kg*cm (at 11.1V)

Operating Voltage 9.0-12.6V

Rotation Range
Control method
Feedback

Gear Material
Response Time

0-1000, corresponding to 0-240°
UART serial command
Position, temperature, voltage
Metal gears

0.18sec / 60° 11.1v

The intelligent bus servo system enables coordinated multi-joint control while pro-
viding real-time feedback for closed-loop position control and system health monitoring.

A.2.3. Computing Platform

Figure A.3: NVIDIA Jetson Nano B01 development board integrated in JetHexa

The computational core consists of an NVIDIA Jetson Nano B01 development board,
providing GPU-accelerated computing capabilities essential for real-time Al inference

and robot control.

Table A.3: Jetson Nano Computing Specifications

Component Specification

CPU ARM Cortex-A57 quad-core @ 1.43GHz
GPU NVIDIA Maxwell 128-core @ 921MHz
Memory 4GB LPDDR4 @ 1600MHz

Storage 32GB microSD card

Operating System Ubuntu 18.04 LTS

ROS Version ROS Melodic

Al Frameworks
Power Consumption

TensorRT, PyTorch, OpenCV
5-10W (software dependent)
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The Jetson Nano enables deployment of sophisticated machine learning models while
maintaining real-time control loop performance through its dedicated GPU acceleration
capabilities.

A.2.4. Expansion Board

PWM Servo Port IMU Sensor

Serial Port

Serial Bus
Servo Port

Power Port e

®
Power Switch -

Figure A.4: Multi-functional Expansion Board

The expansion board has a built-in IMU sensor which can detect robot posture in real
time. There are 2-channel PWM, two keys, a LED, a buzzer, 9-channel serial bus servo
interface, two GPIO expansion ports and two 1IC interfaces.

A.3 Sensor Suite

The JetHexa platform integrates multiple sensor modalities to support advanced naviga-
tion, perception, and interaction capabilities.

A.3.1. Inertial Measurement

The integrated IMU provides essential orientation and motion feedback for balance con-
trol and navigation algorithms.
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A.3.2. 3D Depth Camera

Figure A.5: 3D depth camera mounted on JetHexa for visual perception

The depth camera system enables advanced computer vision applications including 3D
mapping, object recognition, and visual navigation.

Table A.4: 3D Depth Camera Specifications

Parameter Specification

RGB Resolution 640x480 @ 30fps

Depth Resolution 320x240 @ 30fps

Depth Range 0.3-3m

Field of View 67.9° horizontal, 45.3° vertical
Interface USB2.0 Micro USB

Power Consumption <2W

A.3.3. LiDAR System

Figure A.6: EAI G4 Lidar

The platform supports multiple LIDAR configurations for precise 2D mapping and ob-
stacle detection capabilities.
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Table A.5: LiDAR Specifications (EAI G4 Lidar)

Parameter Specification

Range 0.12-16m

Accuracy 2.0% (1Im < distance < 8m)
Angular Resolution  0.28@7Hz

Scan Rate 5-12Hz

Sample Rate Up to 9000 samples/second
Interface USB 2.0

Power Consumption 5W

A.3.4. Microphone Array

Figure A.7: 6-channel circular microphone array for audio processing

A 6-channel circular microphone array provides advanced audio capabilities including
sound source localization and voice recognition.

Table A.6: Microphone Array Specifications (iIFLYTEK 6-Microphone Array)

Parameter Specification

Channels 6 omnidirectional microphones
Pick-up distance 10m

Angle range 360°

Sound source positioning  1°
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A.4 Power System

A.4.1. Battery Configuration

Figure A.8: 11.1V LiPo battery pack with integrated charging system

The JetHexa employs a high-capacity lithium polymer battery system designed for ex-
tended autonomous operation.

Table A.7: Battery System Specifications

Parameter Specification

Battery Type 3S LiPo (Lithium Polymer)
Voltage 11.1V nominal (12.6V max)
Capacity 3500mAh

Discharge Rate 5C continuous

Energy Density 38.85Wh

Charging Time 2-3 hours

Operational Time 60-90 minutes (load dependent)
Safety Features Overcharge, overdischarge protection

A.4.2. Power Distribution

The power management system distributes electrical power across multiple subsystems
while monitoring consumption and battery status.

Table A.8: Power Consumption Analysis

Subsystem Power Draw Peak Power
18x HX-35H Servos 18-54W 180W
Jetson Nano 5-10W 15W
Depth Camera 2W 2W
LiDAR 5W 5W
Control Electronics 2-3W 5W

Total System 32-74W 207W
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A.5 Software Architecture

A.5.1. Operating System and Framework

The JetHexa runs Ubuntu 18.04 LTS with ROS Melodic, providing a stable foundation for
robotics development and research applications.

Table A.9: Software Stack

Component Version/Specification

Operating System Ubuntu 18.04.6 LTS
Robotics Framework ROS Melodic Morenia
Python Environment Python 3.6.9

OpenCV 420
TensorRT 7.1.3
CUDA 10.2
PyTorch 1.7.0
Communication WiFi, Ethernet, USB

A.5.2. Control Interfaces

Multiple control methods enable flexible interaction with the platform:

Programmatic Control: ROS nodes enable direct integration with custom algorithms
and research code. Python and C++ APIs provide access to all actuators and sensors.

Remote Control: Wireless gamepad controller enables manual operation for testing
and demonstration purposes.

Mobile Applications: iOS and Android applications provide user-friendly interfaces
for basic control and monitoring functions.

Web Interface: Browser-based control panel accessible via WiFi connection for remote
operation and parameter adjustment.

A.6 Locomotion Capabilities

A.6.1. Gait Patterns

The JetHexa supports multiple gait patterns optimized for different operational require-
ments:

Table A.10: Available Gait Patterns

Gait Type Speed Stability Energy Efficiency
Tripod Gait High  Medium High
Ripple Gait Low High Medium

Custom Patterns Variable Variable Variable
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A.7 Research Applications

The JetHexa platform has been successfully deployed in various research applications:

SLAM and Navigation: The integrated sensor suite enables sophisticated simulta-
neous localization and mapping algorithms with real-time path planning and obstacle
avoidance.

Machine Learning: The Jetson Nano platform supports deployment of neural net-
works for computer vision, reinforcement learning, and sensor fusion applications.

Multi-Robot Systems: Multiple JetHexa units can be coordinated for swarm robotics
research and formation control studies.

Human-Robot Interaction: The microphone array and speaker system enable natural
language interaction and voice-controlled operation.

A.8 Limitations and Considerations

While the JetHexa provides a robust research platform, several limitations should be con-
sidered:

Payload Constraints: The 500g payload limit restricts additional sensor or computing
equipment integration.

Operational Environment: The platform is optimized for indoor environments with
limited weatherproofing for outdoor deployment.

Battery Life: The 60-90 minute operational time requires careful power management
for extended experiments.

Joint Wear: Intensive operation may lead to servo wear, particularly in research ap-
plications involving repetitive motions.

Software Dependencies: The Ubuntu 18.04/ROS Melodic stack may require updates
for compatibility with newer software packages.

This comprehensive specification provides the technical foundation for understand-
ing the capabilities and constraints of the JetHexa platform as used in this research.






APPENDIX B

Humanoid G1 Language
Locomotion: ARA Course Project

This appendix presents some of the slides from the proof-of-concept study conducted
using the Unitree G1 humanoid robot as part of coursework for "Aplicaciones de Re-
conocimiento de Formas y Aprendizaje Automatico (ARA)." This preliminary work vali-
dated the core concepts later applied to the JetHexa hexapod implementation.

B.1 Project Overview Slides

Introduction & Motivation
Towards Generalist Robotics
The Intelligence Gap

¢ Large Language Models demonstrate near-human intelligence in software
¢ Physical intelligence in robotics remains limited and task-specific
Why Language-Driven Robot Control?
¢ Language is humanity’s interface for complex reasoning
¢ Enables robots to leverage semantic understanding from LLMs
Social & Environmental Impact
¢ Social: Generalist robots could assist in diverse daily tasks

¢ Environmental: Single adaptable robots replace multiple specialized ones

Figure B.1: Project motivation and objectives
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Task Description
Robot

¢ Humanoid robot Unitree G1, 1.20 meters tall, 35 kg, 37 DOF
Data Acquisition Process

* Generated diverse natural language movement commands using
Claude.ai

¢ Each command paired with target velocities (linear_x, linear_y, angular_z)
¢ Pre-computed transformer embeddings stored as .npy files

¢ Progressive dataset expansion to address learning imbalances

Dataset Statistics Value Movement Distribution Count
Total commands 922 Forward commands 412 (45%)
English 598 (65%) Backward commands 125 (14%)
Spanish 142 (15%) Turn commands 198 (22%)
German 76 (8%) Stop commands 89 (10%)
French 68 (7%) Lateral commands 62 (7%)
Other 38 (4%) Combined movements 36 (4%)

Figure B.2: G1 task description and dataset composition
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B.2 Technical Implementation Details

Feature Extraction & Input/Output
Language Embedding

* Model: al1-MinilM-L6-v2 (22M params)
¢ Optimized for semantic similarity
Observation Space (691D)
* Motion: Linear/Angular Velocity v, w € R3, Gravity Vector ¢ € R3
e Joints: Positions/Velocities 6,0 € R

* Context: Language Embedding e € R**, Height Scan h € R'¥, Previous
Actiona;_; € R¥

Output
* Joint Position Targets 01arger € R
Reward Components
¢ Task: Language tracking (2.5), Success bonus (1.5)

* Regularization: Torques, accelerations, smoothness

¢ Gait Quality: Air time, orientation, joint stability

Figure B.3: G1 feature extraction and observation space architecture

B.3 Experimental Results

Results: Performance by Category
Performance by Test Category

Performance by Movement Type

Test Category S. E
Close variations (25) 19 6 Movement Success Failure
Novel concepts (19) 13 6 Forward (45) 13 0
Novel verbs (15) 8 7
- Left turn (15) 10 5
Multilingual (10) 4 6 .
. Right turn (15) 7 8
Slang/Colloquial (10) 4 6
T - Stop (15) 10 5
ypo variations (9) 3 6
. Backward (12) 9 3
Formal/Technical (10) 6 4 .

. Combined (10) 8 2
Uncertain/Hedged (8) 4 4 Lateral (8) 5 3
Emphasis/Urgency (7) 4 3
Abbreviations (7) 4 3

Overall Test Set Performance: 69/120 (58%) Success Rate

Figure B.4: G1 project performance results by category and movement type
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B.4 Project Conclusions and Implications

Conclusions
Key Achievements

e Achieved 58% success rate on diverse test set (120 novel commands)
¢ Demonstrated emergent capabilities on humanoid platform
Technical Insights
¢ Direct language-to-action mapping works without symbolic intermediates
* Progressive curriculum essential for balanced learning
Towards Generalist Robotics

Natural language provides a scalable interface for robot control,
enabling semantic generalization beyond explicit training data

Figure B.5: Project conclusions and implications for generalist robotics

B.5 Relationship to Main Research

This proof-of-concept study using the Unitree G1 humanoid robot provided essential val-
idation for the language-guided locomotion approach later implemented on the JetHexa
hexapod platform.

Transition to JetHexa Implementation: The success of this G1 study provided confi-
dence to proceed with the more hardware-focused JetHexa implementation, where real-
world deployment and embedded system constraints became primary considerations.
The hexapod platform offered superior stability characteristics and more practical de-
ployment opportunities while maintaining the validated language-guided control prin-
ciples established in this preliminary work.



APPENDIX C

Objetivos De Desarrollo Sostenible

Grado de relacion del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenible

Alto

Medio

Bajo

No
procede

ODS 1.

Fin de la pobreza.

X

ODS 2.

Hambre cero.

X

ODS 3.

Salud y bienestar.

ODS 4.

Educacion de calidad.

ODS 5.

Igualdad de género.

ODS 6.

Agua limpia y saneamiento.

ODS 7.

Energia asequible y no contaminante.

ODS 8.

Trabajo decente y crecimiento econémico.

ODS 9.

Industria, innovacién e infraestructuras.

ODS 10.

Reduccidon de las desigualdades.

ODS 11.

Ciudades y comunidades sostenibles.

ODS 12.

Produccién y consumo responsables.

x| x| X

ODS 13.

Accién por el clima.

ODS 14.

Vida submarina.

ODS 15.

Vida de ecosistemas terrestres.

ODS 16.

Paz, justicia e instituciones sélidas.

ODS 17.

Alianzas para lograr objetivos.
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Reflexion sobre la relacion del TEM con los ODS maés relacionados.

ODS 4 - Educacion de Calidad (Relacion Alta)

El sistema desarrollado democratiza el acceso a la robética educativa al eliminar bar-
reras técnicas tradicionales. Los estudiantes pueden controlar robots mediante coman-
dos naturales como "camina hacia adelante" sin necesidad de programacién especial-
izada. El soporte multilingtie (inglés, espafol, aleman, francés) amplia el acceso global,
reduciendo barreras idiomaticas y promoviendo una educacién STEM mads inclusiva en
diferentes contextos culturales.

ODS 9 - Industria, Innovacién e Infraestructuras (Relaciéon Alta)

El enfoque end-to-end representa un avance metodoldgico significativo que simpli-
fica arquitecturas robéticas complejas. La optimizacién para hardware embebido (Jetson
Nano) demuestra la viabilidad de sistemas IA avanzados en plataformas de recursos lim-
itados, facilitando la adopcién en pequefias empresas y contribuyendo a un desarrollo
industrial més inclusivo y eficiente.

ODS 8 - Trabajo Decente y Crecimiento Econémico (Relacién Media)

Los sistemas de control por lenguaje natural pueden transformar la colaboracién
humano-robot, creando oportunidades laborales que requieren habilidades comunica-
tivas en lugar de programacion especializada. Esto puede generar nuevas categorias de
empleo en sectores automatizados, aunque requiere politicas de transicion laboral re-
sponsables.

ODS 10 - Reduccién de las Desigualdades (Relacién Media)

La interfaz intuitiva democratiza el acceso a tecnologias robéticas avanzadas, tradi-
cionalmente limitadas a personal técnico especializado. El soporte multilingiie permite
que personas de diferentes trasfondos culturales interactden con la misma tecnologia,
contribuyendo a reducir desigualdades globales en el acceso a automatizacién.

ODS 12 - Produccién y Consumo Responsables (Relacién Media)

Los robots generalistas controlados por lenguaje pueden reemplazar multiples sis-
temas especializados, reduciendo la necesidad de fabricar dispositivos dedicados. La
eficiencia energética demostrada (5-10W) y la capacidad de reprogramar comportamien-
tos mediante lenguaje natural extienden la vida 1til de los sistemas, promoviendo un uso
maés responsable de recursos.

Consideraciones y Limitaciones

El desarrollo responsable de esta tecnologia requiere considerar implicaciones éticas
como el potencial desplazamiento laboral y cuestiones de privacidad y seguridad. Es
fundamental implementar politicas que aseguren una transiciéon justa y mantengan el
control humano apropiado sobre sistemas robéticos auténomos.

En conclusién, este trabajo contribuye principalmente a la innovacién tecnolégica in-
clusiva y la democratizacién del acceso a robética avanzada, con potencial para impactar
positivamente la educacién, industria y desarrollo sostenible cuando se implementa de
manera responsable.



